Mister Exam

Derivative of sin(x²)-cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\         
sin\x / - cos(x)
sin(x2)cos(x)\sin{\left(x^{2} \right)} - \cos{\left(x \right)}
sin(x^2) - cos(x)
Detail solution
  1. Differentiate sin(x2)cos(x)\sin{\left(x^{2} \right)} - \cos{\left(x \right)} term by term:

    1. Let u=x2u = x^{2}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      The result of the chain rule is:

      2xcos(x2)2 x \cos{\left(x^{2} \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      So, the result is: sin(x)\sin{\left(x \right)}

    The result is: 2xcos(x2)+sin(x)2 x \cos{\left(x^{2} \right)} + \sin{\left(x \right)}


The answer is:

2xcos(x2)+sin(x)2 x \cos{\left(x^{2} \right)} + \sin{\left(x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
       / 2\         
2*x*cos\x / + sin(x)
2xcos(x2)+sin(x)2 x \cos{\left(x^{2} \right)} + \sin{\left(x \right)}
The second derivative [src]
     / 2\      2    / 2\         
2*cos\x / - 4*x *sin\x / + cos(x)
4x2sin(x2)+cos(x)+2cos(x2)- 4 x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x \right)} + 2 \cos{\left(x^{2} \right)}
The third derivative [src]
 /   3    / 2\           / 2\         \
-\8*x *cos\x / + 12*x*sin\x / + sin(x)/
(8x3cos(x2)+12xsin(x2)+sin(x))- (8 x^{3} \cos{\left(x^{2} \right)} + 12 x \sin{\left(x^{2} \right)} + \sin{\left(x \right)})