Mister Exam

Other calculators

Derivative of sin(2*x)/((5*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
  5*x   
$$\frac{\sin{\left(2 x \right)}}{5 x}$$
sin(2*x)/((5*x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   1             sin(2*x)
2*---*cos(2*x) - --------
  5*x                 2  
                   5*x   
$$2 \frac{1}{5 x} \cos{\left(2 x \right)} - \frac{\sin{\left(2 x \right)}}{5 x^{2}}$$
The second derivative [src]
  /              sin(2*x)   2*cos(2*x)\
2*|-2*sin(2*x) + -------- - ----------|
  |                  2          x     |
  \                 x                 /
---------------------------------------
                  5*x                  
$$\frac{2 \left(- 2 \sin{\left(2 x \right)} - \frac{2 \cos{\left(2 x \right)}}{x} + \frac{\sin{\left(2 x \right)}}{x^{2}}\right)}{5 x}$$
The third derivative [src]
  /              3*sin(2*x)   6*sin(2*x)   6*cos(2*x)\
2*|-4*cos(2*x) - ---------- + ---------- + ----------|
  |                   3           x             2    |
  \                  x                         x     /
------------------------------------------------------
                         5*x                          
$$\frac{2 \left(- 4 \cos{\left(2 x \right)} + \frac{6 \sin{\left(2 x \right)}}{x} + \frac{6 \cos{\left(2 x \right)}}{x^{2}} - \frac{3 \sin{\left(2 x \right)}}{x^{3}}\right)}{5 x}$$