Mister Exam

Other calculators


sin(2*x)/cos(5*x)

Derivative of sin(2*x)/cos(5*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
cos(5*x)
$$\frac{\sin{\left(2 x \right)}}{\cos{\left(5 x \right)}}$$
sin(2*x)/cos(5*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(2*x)   5*sin(2*x)*sin(5*x)
---------- + -------------------
 cos(5*x)            2          
                  cos (5*x)     
$$\frac{5 \sin{\left(2 x \right)} \sin{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + \frac{2 \cos{\left(2 x \right)}}{\cos{\left(5 x \right)}}$$
The second derivative [src]
                 /         2     \                                
                 |    2*sin (5*x)|            20*cos(2*x)*sin(5*x)
-4*sin(2*x) + 25*|1 + -----------|*sin(2*x) + --------------------
                 |        2      |                  cos(5*x)      
                 \     cos (5*x) /                                
------------------------------------------------------------------
                             cos(5*x)                             
$$\frac{25 \left(\frac{2 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + 1\right) \sin{\left(2 x \right)} - 4 \sin{\left(2 x \right)} + \frac{20 \sin{\left(5 x \right)} \cos{\left(2 x \right)}}{\cos{\left(5 x \right)}}}{\cos{\left(5 x \right)}}$$
The third derivative [src]
                                                                          /         2     \                  
                                                                          |    6*sin (5*x)|                  
                                                                      125*|5 + -----------|*sin(2*x)*sin(5*x)
                  /         2     \                                       |        2      |                  
                  |    2*sin (5*x)|            60*sin(2*x)*sin(5*x)       \     cos (5*x) /                  
-8*cos(2*x) + 150*|1 + -----------|*cos(2*x) - -------------------- + ---------------------------------------
                  |        2      |                  cos(5*x)                         cos(5*x)               
                  \     cos (5*x) /                                                                          
-------------------------------------------------------------------------------------------------------------
                                                   cos(5*x)                                                  
$$\frac{150 \left(\frac{2 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + 1\right) \cos{\left(2 x \right)} + \frac{125 \left(\frac{6 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + 5\right) \sin{\left(2 x \right)} \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}} - \frac{60 \sin{\left(2 x \right)} \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}} - 8 \cos{\left(2 x \right)}}{\cos{\left(5 x \right)}}$$
The graph
Derivative of sin(2*x)/cos(5*x)