Mister Exam

Other calculators

Derivative of sin(2*pi*x/a)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /2*pi*x\
sin|------|
   \  a   /
$$\sin{\left(\frac{2 \pi x}{a} \right)}$$
sin(((2*pi)*x)/a)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
        /2*pi*x\
2*pi*cos|------|
        \  a   /
----------------
       a        
$$\frac{2 \pi \cos{\left(\frac{2 \pi x}{a} \right)}}{a}$$
The second derivative [src]
     2    /2*pi*x\
-4*pi *sin|------|
          \  a   /
------------------
         2        
        a         
$$- \frac{4 \pi^{2} \sin{\left(\frac{2 \pi x}{a} \right)}}{a^{2}}$$
The third derivative [src]
     3    /2*pi*x\
-8*pi *cos|------|
          \  a   /
------------------
         3        
        a         
$$- \frac{8 \pi^{3} \cos{\left(\frac{2 \pi x}{a} \right)}}{a^{3}}$$