Mister Exam

Other calculators

Derivative of sin(12(x^2)+x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    2    \
sin\12*x  + x/
sin(12x2+x)\sin{\left(12 x^{2} + x \right)}
sin(12*x^2 + x)
Detail solution
  1. Let u=12x2+xu = 12 x^{2} + x.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(12x2+x)\frac{d}{d x} \left(12 x^{2} + x\right):

    1. Differentiate 12x2+x12 x^{2} + x term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 24x24 x

      2. Apply the power rule: xx goes to 11

      The result is: 24x+124 x + 1

    The result of the chain rule is:

    (24x+1)cos(12x2+x)\left(24 x + 1\right) \cos{\left(12 x^{2} + x \right)}

  4. Now simplify:

    (24x+1)cos(x(12x+1))\left(24 x + 1\right) \cos{\left(x \left(12 x + 1\right) \right)}


The answer is:

(24x+1)cos(x(12x+1))\left(24 x + 1\right) \cos{\left(x \left(12 x + 1\right) \right)}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
              /    2    \
(1 + 24*x)*cos\12*x  + x/
(24x+1)cos(12x2+x)\left(24 x + 1\right) \cos{\left(12 x^{2} + x \right)}
The second derivative [src]
                                 2                  
24*cos(x*(1 + 12*x)) - (1 + 24*x) *sin(x*(1 + 12*x))
(24x+1)2sin(x(12x+1))+24cos(x(12x+1))- \left(24 x + 1\right)^{2} \sin{\left(x \left(12 x + 1\right) \right)} + 24 \cos{\left(x \left(12 x + 1\right) \right)}
The third derivative [src]
            /                                 2                  \
-(1 + 24*x)*\72*sin(x*(1 + 12*x)) + (1 + 24*x) *cos(x*(1 + 12*x))/
(24x+1)((24x+1)2cos(x(12x+1))+72sin(x(12x+1)))- \left(24 x + 1\right) \left(\left(24 x + 1\right)^{2} \cos{\left(x \left(12 x + 1\right) \right)} + 72 \sin{\left(x \left(12 x + 1\right) \right)}\right)