Mister Exam

Other calculators


sin^2(x^2)

Derivative of sin^2(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2\
sin \x /
$$\sin^{2}{\left(x^{2} \right)}$$
sin(x^2)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 2\    / 2\
4*x*cos\x /*sin\x /
$$4 x \sin{\left(x^{2} \right)} \cos{\left(x^{2} \right)}$$
The second derivative [src]
  /   / 2\    / 2\      2    2/ 2\      2    2/ 2\\
4*\cos\x /*sin\x / - 2*x *sin \x / + 2*x *cos \x //
$$4 \left(- 2 x^{2} \sin^{2}{\left(x^{2} \right)} + 2 x^{2} \cos^{2}{\left(x^{2} \right)} + \sin{\left(x^{2} \right)} \cos{\left(x^{2} \right)}\right)$$
The third derivative [src]
    /       2/ 2\        2/ 2\      2    / 2\    / 2\\
8*x*\- 3*sin \x / + 3*cos \x / - 8*x *cos\x /*sin\x //
$$8 x \left(- 8 x^{2} \sin{\left(x^{2} \right)} \cos{\left(x^{2} \right)} - 3 \sin^{2}{\left(x^{2} \right)} + 3 \cos^{2}{\left(x^{2} \right)}\right)$$
The graph
Derivative of sin^2(x^2)