Mister Exam

Other calculators

Derivative of sin^2(pi*x/l)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/pi*x\
sin |----|
    \ l  /
$$\sin^{2}{\left(\frac{\pi x}{l} \right)}$$
sin((pi*x)/l)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
        /pi*x\    /pi*x\
2*pi*cos|----|*sin|----|
        \ l  /    \ l  /
------------------------
           l            
$$\frac{2 \pi \sin{\left(\frac{\pi x}{l} \right)} \cos{\left(\frac{\pi x}{l} \right)}}{l}$$
The second derivative [src]
    2 /   2/pi*x\      2/pi*x\\
2*pi *|cos |----| - sin |----||
      \    \ l  /       \ l  //
-------------------------------
                2              
               l               
$$\frac{2 \pi^{2} \left(- \sin^{2}{\left(\frac{\pi x}{l} \right)} + \cos^{2}{\left(\frac{\pi x}{l} \right)}\right)}{l^{2}}$$
The third derivative [src]
     3    /pi*x\    /pi*x\
-8*pi *cos|----|*sin|----|
          \ l  /    \ l  /
--------------------------
             3            
            l             
$$- \frac{8 \pi^{3} \sin{\left(\frac{\pi x}{l} \right)} \cos{\left(\frac{\pi x}{l} \right)}}{l^{3}}$$