Mister Exam

Other calculators

Derivative of sin^2(cos3x)+2pi

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2                 
sin (cos(3*x)) + 2*pi
$$\sin^{2}{\left(\cos{\left(3 x \right)} \right)} + 2 \pi$$
sin(cos(3*x))^2 + 2*pi
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    4. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-6*cos(cos(3*x))*sin(3*x)*sin(cos(3*x))
$$- 6 \sin{\left(3 x \right)} \sin{\left(\cos{\left(3 x \right)} \right)} \cos{\left(\cos{\left(3 x \right)} \right)}$$
The second derivative [src]
   /   2              2           2         2                                                 \
18*\cos (cos(3*x))*sin (3*x) - sin (3*x)*sin (cos(3*x)) - cos(3*x)*cos(cos(3*x))*sin(cos(3*x))/
$$18 \left(- \sin^{2}{\left(3 x \right)} \sin^{2}{\left(\cos{\left(3 x \right)} \right)} + \sin^{2}{\left(3 x \right)} \cos^{2}{\left(\cos{\left(3 x \right)} \right)} - \sin{\left(\cos{\left(3 x \right)} \right)} \cos{\left(3 x \right)} \cos{\left(\cos{\left(3 x \right)} \right)}\right)$$
The third derivative [src]
   /                                   2                           2                           2                                 \         
54*\cos(cos(3*x))*sin(cos(3*x)) - 3*sin (cos(3*x))*cos(3*x) + 3*cos (cos(3*x))*cos(3*x) + 4*sin (3*x)*cos(cos(3*x))*sin(cos(3*x))/*sin(3*x)
$$54 \left(4 \sin^{2}{\left(3 x \right)} \sin{\left(\cos{\left(3 x \right)} \right)} \cos{\left(\cos{\left(3 x \right)} \right)} - 3 \sin^{2}{\left(\cos{\left(3 x \right)} \right)} \cos{\left(3 x \right)} + \sin{\left(\cos{\left(3 x \right)} \right)} \cos{\left(\cos{\left(3 x \right)} \right)} + 3 \cos{\left(3 x \right)} \cos^{2}{\left(\cos{\left(3 x \right)} \right)}\right) \sin{\left(3 x \right)}$$