sin^3((3x^2)*4x+5)
3/ 2 \ sin \3*x *4*x + 5/
d / 3/ 2 \\ --\sin \3*x *4*x + 5// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Apply the power rule: goes to
The result is:
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2 2/ 2 \ / 2 \ 108*x *sin \3*x *4*x + 5/*cos\3*x *4*x + 5/
/ / 3\ / 3\ 3 2/ 3\ 3 2/ 3\\ / 3\ 216*x*\cos\5 + 12*x /*sin\5 + 12*x / - 18*x *sin \5 + 12*x / + 36*x *cos \5 + 12*x //*sin\5 + 12*x /
/ 2/ 3\ / 3\ 3 3/ 3\ 6 3/ 3\ 6 2/ 3\ / 3\ 3 2/ 3\ / 3\\ 216*\sin \5 + 12*x /*cos\5 + 12*x / - 108*x *sin \5 + 12*x / + 1296*x *cos \5 + 12*x / - 4536*x *sin \5 + 12*x /*cos\5 + 12*x / + 216*x *cos \5 + 12*x /*sin\5 + 12*x //