6 sin (x - log(x))
sin(x - log(x))^6
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of is .
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
5 / 1\ 6*sin (x - log(x))*|1 - -|*cos(x - log(x)) \ x/
/ 2 2 \ 4 | / 1\ 2 / 1\ 2 cos(x - log(x))*sin(x - log(x))| 6*sin (x - log(x))*|- |1 - -| *sin (x - log(x)) + 5*|1 - -| *cos (x - log(x)) + -------------------------------| | \ x/ \ x/ 2 | \ x /
/ 3 / 1\ 2 / 1\ \ | 3 3 3*sin (x - log(x))*|1 - -| 2 15*cos (x - log(x))*|1 - -|*sin(x - log(x))| 3 | / 1\ 3 / 1\ 2 \ x/ 2*sin (x - log(x))*cos(x - log(x)) \ x/ | 6*sin (x - log(x))*|20*|1 - -| *cos (x - log(x)) - 16*|1 - -| *sin (x - log(x))*cos(x - log(x)) - -------------------------- - ---------------------------------- + -------------------------------------------| | \ x/ \ x/ 2 3 2 | \ x x x /