Mister Exam

Other calculators

Derivative of sin^6(x-lnx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   6            
sin (x - log(x))
$$\sin^{6}{\left(x - \log{\left(x \right)} \right)}$$
sin(x - log(x))^6
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of is .

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     5             /    1\                
6*sin (x - log(x))*|1 - -|*cos(x - log(x))
                   \    x/                
$$6 \left(1 - \frac{1}{x}\right) \sin^{5}{\left(x - \log{\left(x \right)} \right)} \cos{\left(x - \log{\left(x \right)} \right)}$$
The second derivative [src]
                   /         2                             2                                                   \
     4             |  /    1\     2                 /    1\     2               cos(x - log(x))*sin(x - log(x))|
6*sin (x - log(x))*|- |1 - -| *sin (x - log(x)) + 5*|1 - -| *cos (x - log(x)) + -------------------------------|
                   |  \    x/                       \    x/                                     2              |
                   \                                                                           x               /
$$6 \left(- \left(1 - \frac{1}{x}\right)^{2} \sin^{2}{\left(x - \log{\left(x \right)} \right)} + 5 \left(1 - \frac{1}{x}\right)^{2} \cos^{2}{\left(x - \log{\left(x \right)} \right)} + \frac{\sin{\left(x - \log{\left(x \right)} \right)} \cos{\left(x - \log{\left(x \right)} \right)}}{x^{2}}\right) \sin^{4}{\left(x - \log{\left(x \right)} \right)}$$
The third derivative [src]
                   /                                                                                   3             /    1\                                              2             /    1\                \
                   |          3                              3                                    3*sin (x - log(x))*|1 - -|        2                               15*cos (x - log(x))*|1 - -|*sin(x - log(x))|
     3             |   /    1\     3                  /    1\     2                                                  \    x/   2*sin (x - log(x))*cos(x - log(x))                       \    x/                |
6*sin (x - log(x))*|20*|1 - -| *cos (x - log(x)) - 16*|1 - -| *sin (x - log(x))*cos(x - log(x)) - -------------------------- - ---------------------------------- + -------------------------------------------|
                   |   \    x/                        \    x/                                                  2                                3                                         2                    |
                   \                                                                                          x                                x                                         x                     /
$$6 \left(- 16 \left(1 - \frac{1}{x}\right)^{3} \sin^{2}{\left(x - \log{\left(x \right)} \right)} \cos{\left(x - \log{\left(x \right)} \right)} + 20 \left(1 - \frac{1}{x}\right)^{3} \cos^{3}{\left(x - \log{\left(x \right)} \right)} - \frac{3 \left(1 - \frac{1}{x}\right) \sin^{3}{\left(x - \log{\left(x \right)} \right)}}{x^{2}} + \frac{15 \left(1 - \frac{1}{x}\right) \sin{\left(x - \log{\left(x \right)} \right)} \cos^{2}{\left(x - \log{\left(x \right)} \right)}}{x^{2}} - \frac{2 \sin^{2}{\left(x - \log{\left(x \right)} \right)} \cos{\left(x - \log{\left(x \right)} \right)}}{x^{3}}\right) \sin^{3}{\left(x - \log{\left(x \right)} \right)}$$