4/ ___\ sin \2*x - 3*\/ x /
sin(2*x - 3*sqrt(x))^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
3/ ___\ / 3 \ / ___\ 4*sin \2*x - 3*\/ x /*|2 - -------|*cos\-2*x + 3*\/ x / | ___| \ 2*\/ x /
/ 2 2 / ___\ / ___\\ 2/ ___\ | / 3 \ 2/ ___\ / 3 \ 2/ ___\ 3*cos\-2*x + 3*\/ x /*sin\-2*x + 3*\/ x /| sin \-2*x + 3*\/ x /*|- |4 - -----| *sin \-2*x + 3*\/ x / + 3*|4 - -----| *cos \-2*x + 3*\/ x / - -----------------------------------------| | | ___| | ___| 3/2 | \ \ \/ x / \ \/ x / x /
/ 3/ ___\ / 3 \ 2/ ___\ / 3 \ / ___\\ | 9*sin \-2*x + 3*\/ x /*|4 - -----| 27*cos \-2*x + 3*\/ x /*|4 - -----|*sin\-2*x + 3*\/ x /| | 3 3 | ___| 2/ ___\ / ___\ | ___| | | / 3 \ 3/ ___\ / 3 \ 2/ ___\ / ___\ \ \/ x / 9*sin \-2*x + 3*\/ x /*cos\-2*x + 3*\/ x / \ \/ x / | / ___\ |- 3*|4 - -----| *cos \-2*x + 3*\/ x / + 5*|4 - -----| *sin \-2*x + 3*\/ x /*cos\-2*x + 3*\/ x / - ---------------------------------- + ------------------------------------------ + -------------------------------------------------------|*sin\-2*x + 3*\/ x / | | ___| | ___| 3/2 5/2 3/2 | \ \ \/ x / \ \/ x / 2*x 2*x 2*x /