Mister Exam

Other calculators

Derivative of sin^4*(2x-3sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/          ___\
sin \2*x - 3*\/ x /
$$\sin^{4}{\left(- 3 \sqrt{x} + 2 x \right)}$$
sin(2*x - 3*sqrt(x))^4
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     3/          ___\ /       3   \    /           ___\
4*sin \2*x - 3*\/ x /*|2 - -------|*cos\-2*x + 3*\/ x /
                      |        ___|                    
                      \    2*\/ x /                    
$$4 \left(2 - \frac{3}{2 \sqrt{x}}\right) \sin^{3}{\left(- 3 \sqrt{x} + 2 x \right)} \cos{\left(3 \sqrt{x} - 2 x \right)}$$
The second derivative [src]
                     /             2                                     2                             /           ___\    /           ___\\
   2/           ___\ |  /      3  \     2/           ___\     /      3  \     2/           ___\   3*cos\-2*x + 3*\/ x /*sin\-2*x + 3*\/ x /|
sin \-2*x + 3*\/ x /*|- |4 - -----| *sin \-2*x + 3*\/ x / + 3*|4 - -----| *cos \-2*x + 3*\/ x / - -----------------------------------------|
                     |  |      ___|                           |      ___|                                             3/2                  |
                     \  \    \/ x /                           \    \/ x /                                            x                     /
$$\left(- \left(4 - \frac{3}{\sqrt{x}}\right)^{2} \sin^{2}{\left(3 \sqrt{x} - 2 x \right)} + 3 \left(4 - \frac{3}{\sqrt{x}}\right)^{2} \cos^{2}{\left(3 \sqrt{x} - 2 x \right)} - \frac{3 \sin{\left(3 \sqrt{x} - 2 x \right)} \cos{\left(3 \sqrt{x} - 2 x \right)}}{x^{\frac{3}{2}}}\right) \sin^{2}{\left(3 \sqrt{x} - 2 x \right)}$$
The third derivative [src]
/                                                                                                       3/           ___\ /      3  \                                                      2/           ___\ /      3  \    /           ___\\                    
|                                                                                                  9*sin \-2*x + 3*\/ x /*|4 - -----|                                                27*cos \-2*x + 3*\/ x /*|4 - -----|*sin\-2*x + 3*\/ x /|                    
|               3                                     3                                                                   |      ___|        2/           ___\    /           ___\                           |      ___|                    |                    
|    /      3  \     3/           ___\     /      3  \     2/           ___\    /           ___\                          \    \/ x /   9*sin \-2*x + 3*\/ x /*cos\-2*x + 3*\/ x /                           \    \/ x /                    |    /           ___\
|- 3*|4 - -----| *cos \-2*x + 3*\/ x / + 5*|4 - -----| *sin \-2*x + 3*\/ x /*cos\-2*x + 3*\/ x / - ---------------------------------- + ------------------------------------------ + -------------------------------------------------------|*sin\-2*x + 3*\/ x /
|    |      ___|                           |      ___|                                                              3/2                                      5/2                                                 3/2                        |                    
\    \    \/ x /                           \    \/ x /                                                           2*x                                      2*x                                                 2*x                           /                    
$$\left(5 \left(4 - \frac{3}{\sqrt{x}}\right)^{3} \sin^{2}{\left(3 \sqrt{x} - 2 x \right)} \cos{\left(3 \sqrt{x} - 2 x \right)} - 3 \left(4 - \frac{3}{\sqrt{x}}\right)^{3} \cos^{3}{\left(3 \sqrt{x} - 2 x \right)} - \frac{9 \left(4 - \frac{3}{\sqrt{x}}\right) \sin^{3}{\left(3 \sqrt{x} - 2 x \right)}}{2 x^{\frac{3}{2}}} + \frac{27 \left(4 - \frac{3}{\sqrt{x}}\right) \sin{\left(3 \sqrt{x} - 2 x \right)} \cos^{2}{\left(3 \sqrt{x} - 2 x \right)}}{2 x^{\frac{3}{2}}} + \frac{9 \sin^{2}{\left(3 \sqrt{x} - 2 x \right)} \cos{\left(3 \sqrt{x} - 2 x \right)}}{2 x^{\frac{5}{2}}}\right) \sin{\left(3 \sqrt{x} - 2 x \right)}$$