5 sin (x)*log(x) -------------- 2
(sin(x)^5*log(x))/2
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
The derivative of is .
The result is:
So, the result is:
Now simplify:
The answer is:
5 4 sin (x) 5*sin (x)*cos(x)*log(x) ------- + ----------------------- 2*x 2
/ 2 \ 3 |sin (x) / 2 2 \ 10*cos(x)*sin(x)| -sin (x)*|------- + 5*\sin (x) - 4*cos (x)/*log(x) - ----------------| | 2 x | \ x / ----------------------------------------------------------------------- 2
/ 3 / 2 2 \ 2 \ 2 | 2*sin (x) / 2 2 \ 15*\sin (x) - 4*cos (x)/*sin(x) 15*sin (x)*cos(x)| -sin (x)*|- --------- + 5*\- 12*cos (x) + 13*sin (x)/*cos(x)*log(x) + ------------------------------- + -----------------| | 3 x 2 | \ x x / --------------------------------------------------------------------------------------------------------------------------- 2