5 / 2 \ sin (x)*log\3*x + x/
sin(x)^5*log(3*x^2 + x)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
5
sin (x)*(1 + 6*x) 4 / 2 \
----------------- + 5*sin (x)*cos(x)*log\3*x + x/
2
3*x + x
/ / 2\ \
| 2 | (1 + 6*x) | |
| sin (x)*|6 - -----------| |
3 | / 2 2 \ \ x*(1 + 3*x)/ 10*(1 + 6*x)*cos(x)*sin(x)|
sin (x)*|- 5*\sin (x) - 4*cos (x)/*log(x*(1 + 3*x)) + ------------------------- + --------------------------|
\ x*(1 + 3*x) x*(1 + 3*x) /
/ / 2\ / 2\ \
| 3 | (1 + 6*x) | 2 | (1 + 6*x) | |
| / 2 2 \ 2*sin (x)*(1 + 6*x)*|9 - -----------| 15*sin (x)*|6 - -----------|*cos(x)|
2 | / 2 2 \ 15*(1 + 6*x)*\sin (x) - 4*cos (x)/*sin(x) \ x*(1 + 3*x)/ \ x*(1 + 3*x)/ |
sin (x)*|- 5*\- 12*cos (x) + 13*sin (x)/*cos(x)*log(x*(1 + 3*x)) - ----------------------------------------- - ------------------------------------- + -----------------------------------|
| x*(1 + 3*x) 2 2 x*(1 + 3*x) |
\ x *(1 + 3*x) /