Mister Exam

Other calculators

Derivative of sin^5ln(3x^2+x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5       /   2    \
sin (x)*log\3*x  + x/
$$\log{\left(3 x^{2} + x \right)} \sin^{5}{\left(x \right)}$$
sin(x)^5*log(3*x^2 + x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5                                              
sin (x)*(1 + 6*x)        4              /   2    \
----------------- + 5*sin (x)*cos(x)*log\3*x  + x/
        2                                         
     3*x  + x                                     
$$\frac{\left(6 x + 1\right) \sin^{5}{\left(x \right)}}{3 x^{2} + x} + 5 \log{\left(3 x^{2} + x \right)} \sin^{4}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative [src]
        /                                                     /              2\                             \
        |                                                2    |     (1 + 6*x) |                             |
        |                                             sin (x)*|6 - -----------|                             |
   3    |    /   2           2   \                            \    x*(1 + 3*x)/   10*(1 + 6*x)*cos(x)*sin(x)|
sin (x)*|- 5*\sin (x) - 4*cos (x)/*log(x*(1 + 3*x)) + ------------------------- + --------------------------|
        \                                                    x*(1 + 3*x)                 x*(1 + 3*x)        /
$$\left(- 5 \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \log{\left(x \left(3 x + 1\right) \right)} + \frac{\left(6 - \frac{\left(6 x + 1\right)^{2}}{x \left(3 x + 1\right)}\right) \sin^{2}{\left(x \right)}}{x \left(3 x + 1\right)} + \frac{10 \left(6 x + 1\right) \sin{\left(x \right)} \cos{\left(x \right)}}{x \left(3 x + 1\right)}\right) \sin^{3}{\left(x \right)}$$
The third derivative [src]
        /                                                                                                                          /              2\              /              2\       \
        |                                                                                                           3              |     (1 + 6*x) |         2    |     (1 + 6*x) |       |
        |                                                                       /   2           2   \          2*sin (x)*(1 + 6*x)*|9 - -----------|   15*sin (x)*|6 - -----------|*cos(x)|
   2    |    /        2            2   \                           15*(1 + 6*x)*\sin (x) - 4*cos (x)/*sin(x)                       \    x*(1 + 3*x)/              \    x*(1 + 3*x)/       |
sin (x)*|- 5*\- 12*cos (x) + 13*sin (x)/*cos(x)*log(x*(1 + 3*x)) - ----------------------------------------- - ------------------------------------- + -----------------------------------|
        |                                                                         x*(1 + 3*x)                               2          2                           x*(1 + 3*x)            |
        \                                                                                                                  x *(1 + 3*x)                                                   /
$$\left(- 5 \left(13 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \log{\left(x \left(3 x + 1\right) \right)} \cos{\left(x \right)} + \frac{15 \left(6 - \frac{\left(6 x + 1\right)^{2}}{x \left(3 x + 1\right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)}}{x \left(3 x + 1\right)} - \frac{15 \left(6 x + 1\right) \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{x \left(3 x + 1\right)} - \frac{2 \left(9 - \frac{\left(6 x + 1\right)^{2}}{x \left(3 x + 1\right)}\right) \left(6 x + 1\right) \sin^{3}{\left(x \right)}}{x^{2} \left(3 x + 1\right)^{2}}\right) \sin^{2}{\left(x \right)}$$