Mister Exam

Other calculators

  • How to use it?

  • Derivative of:
  • Derivative of x^2+cos(x) Derivative of x^2+cos(x)
  • Derivative of 5^-x Derivative of 5^-x
  • Derivative of x*sin(3*x) Derivative of x*sin(3*x)
  • Derivative of cos(3)^(2)*x-sin(3)^(2)*x Derivative of cos(3)^(2)*x-sin(3)^(2)*x
  • Identical expressions

  • sin(√ three)+ one / three *(sin(three *x))^ two /(cos(six *x))
  • sinus of (√3) plus 1 divide by 3 multiply by ( sinus of (3 multiply by x)) squared divide by ( co sinus of e of (6 multiply by x))
  • sinus of (√ three) plus one divide by three multiply by ( sinus of (three multiply by x)) to the power of two divide by ( co sinus of e of (six multiply by x))
  • sin(√3)+1/3*(sin(3*x))2/(cos(6*x))
  • sin√3+1/3*sin3*x2/cos6*x
  • sin(√3)+1/3*(sin(3*x))²/(cos(6*x))
  • sin(√3)+1/3*(sin(3*x)) to the power of 2/(cos(6*x))
  • sin(√3)+1/3(sin(3x))^2/(cos(6x))
  • sin(√3)+1/3(sin(3x))2/(cos(6x))
  • sin√3+1/3sin3x2/cos6x
  • sin√3+1/3sin3x^2/cos6x
  • sin(√3)+1 divide by 3*(sin(3*x))^2 divide by (cos(6*x))
  • Similar expressions

  • sin(√3)-1/3*(sin(3*x))^2/(cos(6*x))

Derivative of sin(√3)+1/3*(sin(3*x))^2/(cos(6*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             /   2     \
             |sin (3*x)|
             |---------|
   /  ___\   \    3    /
sin\\/ 3 / + -----------
               cos(6*x) 
$$\frac{\frac{1}{3} \sin^{2}{\left(3 x \right)}}{\cos{\left(6 x \right)}} + \sin{\left(\sqrt{3} \right)}$$
sin(sqrt(3)) + (sin(3*x)^2/3)/cos(6*x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of the constant is zero.

      The result of the chain rule is:

    4. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      To find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           2              
2*cos(3*x)*sin(3*x)   2*sin (3*x)*sin(6*x)
------------------- + --------------------
      cos(6*x)                2           
                           cos (6*x)      
$$\frac{2 \sin^{2}{\left(3 x \right)} \sin{\left(6 x \right)}}{\cos^{2}{\left(6 x \right)}} + \frac{2 \sin{\left(3 x \right)} \cos{\left(3 x \right)}}{\cos{\left(6 x \right)}}$$
The second derivative [src]
  /                             2         2                                    \
  |   2           2        4*sin (3*x)*sin (6*x)   4*cos(3*x)*sin(3*x)*sin(6*x)|
6*|cos (3*x) + sin (3*x) + --------------------- + ----------------------------|
  |                                 2                        cos(6*x)          |
  \                              cos (6*x)                                     /
--------------------------------------------------------------------------------
                                    cos(6*x)                                    
$$\frac{6 \left(\frac{4 \sin^{2}{\left(3 x \right)} \sin^{2}{\left(6 x \right)}}{\cos^{2}{\left(6 x \right)}} + \sin^{2}{\left(3 x \right)} + \frac{4 \sin{\left(3 x \right)} \sin{\left(6 x \right)} \cos{\left(3 x \right)}}{\cos{\left(6 x \right)}} + \cos^{2}{\left(3 x \right)}\right)}{\cos{\left(6 x \right)}}$$
The third derivative [src]
   /                           2                      2                       2         3              2                       \
   |                      3*cos (3*x)*sin(6*x)   7*sin (3*x)*sin(6*x)   12*sin (3*x)*sin (6*x)   12*sin (6*x)*cos(3*x)*sin(3*x)|
36*|4*cos(3*x)*sin(3*x) + -------------------- + -------------------- + ---------------------- + ------------------------------|
   |                            cos(6*x)               cos(6*x)                  3                            2                |
   \                                                                          cos (6*x)                    cos (6*x)           /
--------------------------------------------------------------------------------------------------------------------------------
                                                            cos(6*x)                                                            
$$\frac{36 \left(\frac{12 \sin^{2}{\left(3 x \right)} \sin^{3}{\left(6 x \right)}}{\cos^{3}{\left(6 x \right)}} + \frac{7 \sin^{2}{\left(3 x \right)} \sin{\left(6 x \right)}}{\cos{\left(6 x \right)}} + \frac{12 \sin{\left(3 x \right)} \sin^{2}{\left(6 x \right)} \cos{\left(3 x \right)}}{\cos^{2}{\left(6 x \right)}} + 4 \sin{\left(3 x \right)} \cos{\left(3 x \right)} + \frac{3 \sin{\left(6 x \right)} \cos^{2}{\left(3 x \right)}}{\cos{\left(6 x \right)}}\right)}{\cos{\left(6 x \right)}}$$