acos(x) sin (3*x)
sin(3*x)^acos(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
acos(x) / log(sin(3*x)) 3*acos(x)*cos(3*x)\
sin (3*x)*|- ------------- + ------------------|
| ________ sin(3*x) |
| / 2 |
\ \/ 1 - x /
/ 2 2 \
acos(x) |/ log(sin(3*x)) 3*acos(x)*cos(3*x)\ x*log(sin(3*x)) 9*cos (3*x)*acos(x) 6*cos(3*x) |
sin (3*x)*||- ------------- + ------------------| - 9*acos(x) - --------------- - ------------------- - --------------------|
|| ________ sin(3*x) | 3/2 2 ________ |
|| / 2 | / 2\ sin (3*x) / 2 |
\\ \/ 1 - x / \1 - x / \/ 1 - x *sin(3*x)/
/ 3 / 2 \ 2 2 3 \
acos(x) |/ log(sin(3*x)) 3*acos(x)*cos(3*x)\ 27 log(sin(3*x)) / log(sin(3*x)) 3*acos(x)*cos(3*x)\ | x*log(sin(3*x)) 6*cos(3*x) 9*cos (3*x)*acos(x)| 3*x *log(sin(3*x)) 27*cos (3*x) 54*cos (3*x)*acos(x) 54*acos(x)*cos(3*x) 9*x*cos(3*x) |
sin (3*x)*||- ------------- + ------------------| + ----------- - ------------- - 3*|- ------------- + ------------------|*|9*acos(x) + --------------- + -------------------- + -------------------| - ------------------ + --------------------- + -------------------- + ------------------- - --------------------|
|| ________ sin(3*x) | ________ 3/2 | ________ sin(3*x) | | 3/2 ________ 2 | 5/2 ________ 3 sin(3*x) 3/2 |
|| / 2 | / 2 / 2\ | / 2 | | / 2\ / 2 sin (3*x) | / 2\ / 2 2 sin (3*x) / 2\ |
\\ \/ 1 - x / \/ 1 - x \1 - x / \ \/ 1 - x / \ \1 - x / \/ 1 - x *sin(3*x) / \1 - x / \/ 1 - x *sin (3*x) \1 - x / *sin(3*x)/