Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}$$
The second derivative
[src]
/ 2 2 \
3*\- sin (t) + 2*cos (t)/*sin(t)
$$3 \left(- \sin^{2}{\left(t \right)} + 2 \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)}$$
The third derivative
[src]
/ 2 2 \
3*\- 7*sin (t) + 2*cos (t)/*cos(t)
$$3 \left(- 7 \sin^{2}{\left(t \right)} + 2 \cos^{2}{\left(t \right)}\right) \cos{\left(t \right)}$$