2 sin (x) ------- cos(x)
/ 2 \ d |sin (x)| --|-------| dx\ cos(x)/
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 sin (x) 2*sin(x) + ------- 2 cos (x)
/ 2 \ 2 2 2 | 2*sin (x)| 2*cos (x) + 2*sin (x) + sin (x)*|1 + ---------| | 2 | \ cos (x) / ----------------------------------------------- cos(x)
/ / 2 \\ | 2 | 6*sin (x)|| | sin (x)*|5 + ---------|| | / 2 2 \ 2 | 2 || | 6*\sin (x) - cos (x)/ 12*sin (x) \ cos (x) /| |-2 - --------------------- + ---------- + -----------------------|*sin(x) | 2 2 2 | \ cos (x) cos (x) cos (x) /