Mister Exam

Other calculators


sin^2x/cosx

Derivative of sin^2x/cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2   
sin (x)
-------
 cos(x)
$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$
  /   2   \
d |sin (x)|
--|-------|
dx\ cos(x)/
$$\frac{d}{d x} \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    To find :

    1. The derivative of cosine is negative sine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              3   
           sin (x)
2*sin(x) + -------
              2   
           cos (x)
$$\frac{\sin^{3}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2 \sin{\left(x \right)}$$
The second derivative [src]
                                /         2   \
     2           2         2    |    2*sin (x)|
2*cos (x) + 2*sin (x) + sin (x)*|1 + ---------|
                                |        2    |
                                \     cos (x) /
-----------------------------------------------
                     cos(x)                    
$$\frac{\left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \sin^{2}{\left(x \right)} + 2 \sin^{2}{\left(x \right)} + 2 \cos^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$
The third derivative [src]
/                                                  /         2   \\       
|                                             2    |    6*sin (x)||       
|                                          sin (x)*|5 + ---------||       
|       /   2         2   \         2              |        2    ||       
|     6*\sin (x) - cos (x)/   12*sin (x)           \     cos (x) /|       
|-2 - --------------------- + ---------- + -----------------------|*sin(x)
|               2                 2                   2           |       
\            cos (x)           cos (x)             cos (x)        /       
$$\left(\frac{\left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{12 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - 2 - \frac{6 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}}\right) \sin{\left(x \right)}$$
The graph
Derivative of sin^2x/cosx