Mister Exam

Other calculators

Derivative of sinsqrt4x^-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
   /  _____\
sin\\/ 4*x /
$$\frac{1}{\sin{\left(\sqrt{4 x} \right)}}$$
1/sin(sqrt(4*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       /  _____\   
   -cos\\/ 4*x /   
-------------------
  ___    2/  _____\
\/ x *sin \\/ 4*x /
$$- \frac{\cos{\left(\sqrt{4 x} \right)}}{\sqrt{x} \sin^{2}{\left(\sqrt{4 x} \right)}}$$
The second derivative [src]
           /  _____\           2/  _____\
1       cos\\/ 4*x /      2*cos \\/ 4*x /
- + ------------------- + ---------------
x      3/2    /  _____\        2/  _____\
    2*x   *sin\\/ 4*x /   x*sin \\/ 4*x /
-----------------------------------------
                  /  _____\              
               sin\\/ 4*x /              
$$\frac{\frac{1}{x} + \frac{2 \cos^{2}{\left(\sqrt{4 x} \right)}}{x \sin^{2}{\left(\sqrt{4 x} \right)}} + \frac{\cos{\left(\sqrt{4 x} \right)}}{2 x^{\frac{3}{2}} \sin{\left(\sqrt{4 x} \right)}}}{\sin{\left(\sqrt{4 x} \right)}}$$
The third derivative [src]
 /            2/  _____\           /  _____\          3/  _____\             /  _____\  \ 
 | 3     3*cos \\/ 4*x /      5*cos\\/ 4*x /     6*cos \\/ 4*x /        3*cos\\/ 4*x /  | 
-|---- + ---------------- + ----------------- + ------------------ + -------------------| 
 |   2    2    2/  _____\    3/2    /  _____\    3/2    3/  _____\      5/2    /  _____\| 
 \2*x    x *sin \\/ 4*x /   x   *sin\\/ 4*x /   x   *sin \\/ 4*x /   4*x   *sin\\/ 4*x // 
------------------------------------------------------------------------------------------
                                          /  _____\                                       
                                       sin\\/ 4*x /                                       
$$- \frac{\frac{3}{2 x^{2}} + \frac{3 \cos^{2}{\left(\sqrt{4 x} \right)}}{x^{2} \sin^{2}{\left(\sqrt{4 x} \right)}} + \frac{5 \cos{\left(\sqrt{4 x} \right)}}{x^{\frac{3}{2}} \sin{\left(\sqrt{4 x} \right)}} + \frac{6 \cos^{3}{\left(\sqrt{4 x} \right)}}{x^{\frac{3}{2}} \sin^{3}{\left(\sqrt{4 x} \right)}} + \frac{3 \cos{\left(\sqrt{4 x} \right)}}{4 x^{\frac{5}{2}} \sin{\left(\sqrt{4 x} \right)}}}{\sin{\left(\sqrt{4 x} \right)}}$$