Mister Exam

Derivative of sin(7^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x\
sin\7 /
$$\sin{\left(7^{x} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 x    / x\       
7 *cos\7 /*log(7)
$$7^{x} \log{\left(7 \right)} \cos{\left(7^{x} \right)}$$
The second derivative [src]
 x    2    /   x    / x\      / x\\
7 *log (7)*\- 7 *sin\7 / + cos\7 //
$$7^{x} \left(- 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{2}$$
The third derivative [src]
 x    3    /   2*x    / x\      x    / x\      / x\\
7 *log (7)*\- 7   *cos\7 / - 3*7 *sin\7 / + cos\7 //
$$7^{x} \left(- 7^{2 x} \cos{\left(7^{x} \right)} - 3 \cdot 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{3}$$
The graph
Derivative of sin(7^x)