Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$7^{x} \log{\left(7 \right)} \cos{\left(7^{x} \right)}$$
The second derivative
[src]
x 2 / x / x\ / x\\
7 *log (7)*\- 7 *sin\7 / + cos\7 //
$$7^{x} \left(- 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{2}$$
The third derivative
[src]
x 3 / 2*x / x\ x / x\ / x\\
7 *log (7)*\- 7 *cos\7 / - 3*7 *sin\7 / + cos\7 //
$$7^{x} \left(- 7^{2 x} \cos{\left(7^{x} \right)} - 3 \cdot 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{3}$$