/ x\ sin\7 /
Let u=7xu = 7^{x}u=7x.
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by ddx7x\frac{d}{d x} 7^{x}dxd7x:
ddx7x=7xlog(7)\frac{d}{d x} 7^{x} = 7^{x} \log{\left(7 \right)}dxd7x=7xlog(7)
The result of the chain rule is:
The answer is:
x / x\ 7 *cos\7 /*log(7)
x 2 / x / x\ / x\\ 7 *log (7)*\- 7 *sin\7 / + cos\7 //
x 3 / 2*x / x\ x / x\ / x\\ 7 *log (7)*\- 7 *cos\7 / - 3*7 *sin\7 / + cos\7 //