Mister Exam

Derivative of sin(7^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x\
sin\7 /
sin(7x)\sin{\left(7^{x} \right)}
Detail solution
  1. Let u=7xu = 7^{x}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx7x\frac{d}{d x} 7^{x}:

    1. ddx7x=7xlog(7)\frac{d}{d x} 7^{x} = 7^{x} \log{\left(7 \right)}

    The result of the chain rule is:

    7xlog(7)cos(7x)7^{x} \log{\left(7 \right)} \cos{\left(7^{x} \right)}


The answer is:

7xlog(7)cos(7x)7^{x} \log{\left(7 \right)} \cos{\left(7^{x} \right)}

The graph
02468-8-6-4-2-1010-500000000500000000
The first derivative [src]
 x    / x\       
7 *cos\7 /*log(7)
7xlog(7)cos(7x)7^{x} \log{\left(7 \right)} \cos{\left(7^{x} \right)}
The second derivative [src]
 x    2    /   x    / x\      / x\\
7 *log (7)*\- 7 *sin\7 / + cos\7 //
7x(7xsin(7x)+cos(7x))log(7)27^{x} \left(- 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{2}
The third derivative [src]
 x    3    /   2*x    / x\      x    / x\      / x\\
7 *log (7)*\- 7   *cos\7 / - 3*7 *sin\7 / + cos\7 //
7x(72xcos(7x)37xsin(7x)+cos(7x))log(7)37^{x} \left(- 7^{2 x} \cos{\left(7^{x} \right)} - 3 \cdot 7^{x} \sin{\left(7^{x} \right)} + \cos{\left(7^{x} \right)}\right) \log{\left(7 \right)}^{3}
The graph
Derivative of sin(7^x)