Mister Exam

Other calculators

Derivative of sin((pi/2+pi*n)*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   //pi       \  \
sin||-- + pi*n|*x|
   \\2        /  /
$$\sin{\left(x \left(\pi n + \frac{\pi}{2}\right) \right)}$$
sin((pi/2 + pi*n)*x)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
/pi       \    //pi       \  \
|-- + pi*n|*cos||-- + pi*n|*x|
\2        /    \\2        /  /
$$\left(\pi n + \frac{\pi}{2}\right) \cos{\left(x \left(\pi n + \frac{\pi}{2}\right) \right)}$$
The second derivative [src]
   2          2                    
-pi *(1/2 + n) *sin(pi*x*(1/2 + n))
$$- \pi^{2} \left(n + \frac{1}{2}\right)^{2} \sin{\left(\pi x \left(n + \frac{1}{2}\right) \right)}$$
The third derivative [src]
   3          3                    
-pi *(1/2 + n) *cos(pi*x*(1/2 + n))
$$- \pi^{3} \left(n + \frac{1}{2}\right)^{3} \cos{\left(\pi x \left(n + \frac{1}{2}\right) \right)}$$