/ log(x)\ sin|1 - -------| \ log(10)/
sin(1 - log(x)/log(10))
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of is .
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
/ log(x)\ -cos|-1 + -------| \ log(10)/ ------------------- x*log(10)
/ log(x)\ sin|-1 + -------| \ log(10)/ / log(x)\ ----------------- + cos|-1 + -------| log(10) \ log(10)/ ------------------------------------- 2 x *log(10)
/ log(x)\ / log(x)\ cos|-1 + -------| 3*sin|-1 + -------| / log(x)\ \ log(10)/ \ log(10)/ - 2*cos|-1 + -------| + ----------------- - ------------------- \ log(10)/ 2 log(10) log (10) --------------------------------------------------------------- 3 x *log(10)