Mister Exam

Other calculators

Derivative of sin(ln(5x^8+8x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /   8      \\
sin\log\5*x  + 8*x//
$$\sin{\left(\log{\left(5 x^{8} + 8 x \right)} \right)}$$
sin(log(5*x^8 + 8*x))
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/        7\    /   /   8      \\
\8 + 40*x /*cos\log\5*x  + 8*x//
--------------------------------
              8                 
           5*x  + 8*x           
$$\frac{\left(40 x^{7} + 8\right) \cos{\left(\log{\left(5 x^{8} + 8 x \right)} \right)}}{5 x^{8} + 8 x}$$
The second derivative [src]
  /                                           2                                      2                       \
  |                                 /       7\     /   /  /       7\\\     /       7\     /   /  /       7\\\|
  |    5    /   /  /       7\\\   8*\1 + 5*x / *cos\log\x*\8 + 5*x ///   8*\1 + 5*x / *sin\log\x*\8 + 5*x ///|
8*|35*x *cos\log\x*\8 + 5*x /// - ------------------------------------ - ------------------------------------|
  |                                           2 /       7\                           2 /       7\            |
  \                                          x *\8 + 5*x /                          x *\8 + 5*x /            /
--------------------------------------------------------------------------------------------------------------
                                                          7                                                   
                                                   8 + 5*x                                                    
$$\frac{8 \left(35 x^{5} \cos{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)} - \frac{8 \left(5 x^{7} + 1\right)^{2} \sin{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{x^{2} \left(5 x^{7} + 8\right)} - \frac{8 \left(5 x^{7} + 1\right)^{2} \cos{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{x^{2} \left(5 x^{7} + 8\right)}\right)}{5 x^{7} + 8}$$
The third derivative [src]
   /                                                                                                                                   3                                       3                       \
   |                                     4 /       7\    /   /  /       7\\\        4 /       7\    /   /  /       7\\\      /       7\     /   /  /       7\\\      /       7\     /   /  /       7\\\|
   |     4    /   /  /       7\\\   420*x *\1 + 5*x /*cos\log\x*\8 + 5*x ///   420*x *\1 + 5*x /*sin\log\x*\8 + 5*x ///   32*\1 + 5*x / *cos\log\x*\8 + 5*x ///   96*\1 + 5*x / *sin\log\x*\8 + 5*x ///|
16*|105*x *cos\log\x*\8 + 5*x /// - ---------------------------------------- - ---------------------------------------- + ------------------------------------- + -------------------------------------|
   |                                                       7                                          7                                            2                                       2           |
   |                                                8 + 5*x                                    8 + 5*x                                 3 /       7\                            3 /       7\            |
   \                                                                                                                                  x *\8 + 5*x /                           x *\8 + 5*x /            /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                       7                                                                                                
                                                                                                8 + 5*x                                                                                                 
$$\frac{16 \left(- \frac{420 x^{4} \left(5 x^{7} + 1\right) \sin{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{5 x^{7} + 8} - \frac{420 x^{4} \left(5 x^{7} + 1\right) \cos{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{5 x^{7} + 8} + 105 x^{4} \cos{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)} + \frac{96 \left(5 x^{7} + 1\right)^{3} \sin{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{x^{3} \left(5 x^{7} + 8\right)^{2}} + \frac{32 \left(5 x^{7} + 1\right)^{3} \cos{\left(\log{\left(x \left(5 x^{7} + 8\right) \right)} \right)}}{x^{3} \left(5 x^{7} + 8\right)^{2}}\right)}{5 x^{7} + 8}$$