/ / 8 \\ sin\log\5*x + 8*x//
sin(log(5*x^8 + 8*x))
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 7\ / / 8 \\
\8 + 40*x /*cos\log\5*x + 8*x//
--------------------------------
8
5*x + 8*x
/ 2 2 \
| / 7\ / / / 7\\\ / 7\ / / / 7\\\|
| 5 / / / 7\\\ 8*\1 + 5*x / *cos\log\x*\8 + 5*x /// 8*\1 + 5*x / *sin\log\x*\8 + 5*x ///|
8*|35*x *cos\log\x*\8 + 5*x /// - ------------------------------------ - ------------------------------------|
| 2 / 7\ 2 / 7\ |
\ x *\8 + 5*x / x *\8 + 5*x / /
--------------------------------------------------------------------------------------------------------------
7
8 + 5*x
/ 3 3 \
| 4 / 7\ / / / 7\\\ 4 / 7\ / / / 7\\\ / 7\ / / / 7\\\ / 7\ / / / 7\\\|
| 4 / / / 7\\\ 420*x *\1 + 5*x /*cos\log\x*\8 + 5*x /// 420*x *\1 + 5*x /*sin\log\x*\8 + 5*x /// 32*\1 + 5*x / *cos\log\x*\8 + 5*x /// 96*\1 + 5*x / *sin\log\x*\8 + 5*x ///|
16*|105*x *cos\log\x*\8 + 5*x /// - ---------------------------------------- - ---------------------------------------- + ------------------------------------- + -------------------------------------|
| 7 7 2 2 |
| 8 + 5*x 8 + 5*x 3 / 7\ 3 / 7\ |
\ x *\8 + 5*x / x *\8 + 5*x / /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
7
8 + 5*x