Mister Exam

Other calculators

Derivative of sinln((2x-3)/(x+4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /2*x - 3\\
sin|log|-------||
   \   \ x + 4 //
sin(log(2x3x+4))\sin{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}
sin(log((2*x - 3)/(x + 4)))
Detail solution
  1. Let u=log(2x3x+4)u = \log{\left(\frac{2 x - 3}{x + 4} \right)}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddxlog(2x3x+4)\frac{d}{d x} \log{\left(\frac{2 x - 3}{x + 4} \right)}:

    1. Let u=2x3x+4u = \frac{2 x - 3}{x + 4}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx2x3x+4\frac{d}{d x} \frac{2 x - 3}{x + 4}:

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=2x3f{\left(x \right)} = 2 x - 3 and g(x)=x+4g{\left(x \right)} = x + 4.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Differentiate 2x32 x - 3 term by term:

          1. The derivative of the constant 3-3 is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          The result is: 22

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Differentiate x+4x + 4 term by term:

          1. The derivative of the constant 44 is zero.

          2. Apply the power rule: xx goes to 11

          The result is: 11

        Now plug in to the quotient rule:

        11(x+4)2\frac{11}{\left(x + 4\right)^{2}}

      The result of the chain rule is:

      11(x+4)(x+4)2(2x3)\frac{11 \left(x + 4\right)}{\left(x + 4\right)^{2} \left(2 x - 3\right)}

    The result of the chain rule is:

    11(x+4)cos(log(2x3x+4))(x+4)2(2x3)\frac{11 \left(x + 4\right) \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right)^{2} \left(2 x - 3\right)}

  4. Now simplify:

    11cos(log(2x3x+4))(x+4)(2x3)\frac{11 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right) \left(2 x - 3\right)}


The answer is:

11cos(log(2x3x+4))(x+4)(2x3)\frac{11 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right) \left(2 x - 3\right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
        /  2     2*x - 3 \    /   /2*x - 3\\
(x + 4)*|----- - --------|*cos|log|-------||
        |x + 4          2|    \   \ x + 4 //
        \        (x + 4) /                  
--------------------------------------------
                  2*x - 3                   
(x+4)(2x+42x3(x+4)2)cos(log(2x3x+4))2x3\frac{\left(x + 4\right) \left(\frac{2}{x + 4} - \frac{2 x - 3}{\left(x + 4\right)^{2}}\right) \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{2 x - 3}
The second derivative [src]
               /     /   /-3 + 2*x\\        /   /-3 + 2*x\\   /    -3 + 2*x\    /   /-3 + 2*x\\\
               |  cos|log|--------||   2*cos|log|--------||   |2 - --------|*sin|log|--------|||
/    -3 + 2*x\ |     \   \ 4 + x  //        \   \ 4 + x  //   \     4 + x  /    \   \ 4 + x  //|
|2 - --------|*|- ------------------ - -------------------- - ---------------------------------|
\     4 + x  / \        4 + x                -3 + 2*x                      -3 + 2*x            /
------------------------------------------------------------------------------------------------
                                            -3 + 2*x                                            
(22x3x+4)((22x3x+4)sin(log(2x3x+4))2x32cos(log(2x3x+4))2x3cos(log(2x3x+4))x+4)2x3\frac{\left(2 - \frac{2 x - 3}{x + 4}\right) \left(- \frac{\left(2 - \frac{2 x - 3}{x + 4}\right) \sin{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{2 x - 3} - \frac{2 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{2 x - 3} - \frac{\cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{x + 4}\right)}{2 x - 3}
The third derivative [src]
               /                                                            2                                                                                                                      \
               |     /   /-3 + 2*x\\        /   /-3 + 2*x\\   /    -3 + 2*x\     /   /-3 + 2*x\\        /   /-3 + 2*x\\     /    -3 + 2*x\    /   /-3 + 2*x\\     /    -3 + 2*x\    /   /-3 + 2*x\\|
               |2*cos|log|--------||   8*cos|log|--------||   |2 - --------| *cos|log|--------||   4*cos|log|--------||   6*|2 - --------|*sin|log|--------||   3*|2 - --------|*sin|log|--------|||
/    -3 + 2*x\ |     \   \ 4 + x  //        \   \ 4 + x  //   \     4 + x  /     \   \ 4 + x  //        \   \ 4 + x  //     \     4 + x  /    \   \ 4 + x  //     \     4 + x  /    \   \ 4 + x  //|
|2 - --------|*|-------------------- + -------------------- - ---------------------------------- + -------------------- + ----------------------------------- + -----------------------------------|
\     4 + x  / |             2                       2                             2                (-3 + 2*x)*(4 + x)                          2                        (-3 + 2*x)*(4 + x)        |
               \      (4 + x)              (-3 + 2*x)                    (-3 + 2*x)                                                   (-3 + 2*x)                                                   /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              -3 + 2*x                                                                                              
(22x3x+4)((22x3x+4)2cos(log(2x3x+4))(2x3)2+6(22x3x+4)sin(log(2x3x+4))(2x3)2+3(22x3x+4)sin(log(2x3x+4))(x+4)(2x3)+8cos(log(2x3x+4))(2x3)2+4cos(log(2x3x+4))(x+4)(2x3)+2cos(log(2x3x+4))(x+4)2)2x3\frac{\left(2 - \frac{2 x - 3}{x + 4}\right) \left(- \frac{\left(2 - \frac{2 x - 3}{x + 4}\right)^{2} \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(2 x - 3\right)^{2}} + \frac{6 \left(2 - \frac{2 x - 3}{x + 4}\right) \sin{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(2 x - 3\right)^{2}} + \frac{3 \left(2 - \frac{2 x - 3}{x + 4}\right) \sin{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right) \left(2 x - 3\right)} + \frac{8 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(2 x - 3\right)^{2}} + \frac{4 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right) \left(2 x - 3\right)} + \frac{2 \cos{\left(\log{\left(\frac{2 x - 3}{x + 4} \right)} \right)}}{\left(x + 4\right)^{2}}\right)}{2 x - 3}