Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$81 \sin^{80}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
79 / 2 2 \
81*sin (x)*\- sin (x) + 80*cos (x)/
$$81 \left(- \sin^{2}{\left(x \right)} + 80 \cos^{2}{\left(x \right)}\right) \sin^{79}{\left(x \right)}$$
The third derivative
[src]
78 / 2 2 \
81*sin (x)*\- 241*sin (x) + 6320*cos (x)/*cos(x)
$$81 \left(- 241 \sin^{2}{\left(x \right)} + 6320 \cos^{2}{\left(x \right)}\right) \sin^{78}{\left(x \right)} \cos{\left(x \right)}$$