Mister Exam

Derivative of sin(cos(4x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(cos(4*x))
$$\sin{\left(\cos{\left(4 x \right)} \right)}$$
sin(cos(4*x))
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-4*cos(cos(4*x))*sin(4*x)
$$- 4 \sin{\left(4 x \right)} \cos{\left(\cos{\left(4 x \right)} \right)}$$
The second derivative [src]
    /   2                                            \
-16*\sin (4*x)*sin(cos(4*x)) + cos(4*x)*cos(cos(4*x))/
$$- 16 \left(\sin^{2}{\left(4 x \right)} \sin{\left(\cos{\left(4 x \right)} \right)} + \cos{\left(4 x \right)} \cos{\left(\cos{\left(4 x \right)} \right)}\right)$$
The third derivative [src]
   /   2                                                              \         
64*\sin (4*x)*cos(cos(4*x)) - 3*cos(4*x)*sin(cos(4*x)) + cos(cos(4*x))/*sin(4*x)
$$64 \left(\sin^{2}{\left(4 x \right)} \cos{\left(\cos{\left(4 x \right)} \right)} - 3 \sin{\left(\cos{\left(4 x \right)} \right)} \cos{\left(4 x \right)} + \cos{\left(\cos{\left(4 x \right)} \right)}\right) \sin{\left(4 x \right)}$$
The graph
Derivative of sin(cos(4x))