Mister Exam

Derivative of (sin8x*ln(2x+5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(8*x)*log(2*x + 5)
$$\log{\left(2 x + 5 \right)} \sin{\left(8 x \right)}$$
sin(8*x)*log(2*x + 5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*sin(8*x)                          
---------- + 8*cos(8*x)*log(2*x + 5)
 2*x + 5                            
$$8 \log{\left(2 x + 5 \right)} \cos{\left(8 x \right)} + \frac{2 \sin{\left(8 x \right)}}{2 x + 5}$$
The second derivative [src]
  /   sin(8*x)                               8*cos(8*x)\
4*|- ---------- - 16*log(5 + 2*x)*sin(8*x) + ----------|
  |           2                               5 + 2*x  |
  \  (5 + 2*x)                                         /
$$4 \left(- 16 \log{\left(2 x + 5 \right)} \sin{\left(8 x \right)} + \frac{8 \cos{\left(8 x \right)}}{2 x + 5} - \frac{\sin{\left(8 x \right)}}{\left(2 x + 5\right)^{2}}\right)$$
The third derivative [src]
   / sin(8*x)                               24*sin(8*x)   6*cos(8*x)\
16*|---------- - 32*cos(8*x)*log(5 + 2*x) - ----------- - ----------|
   |         3                                5 + 2*x              2|
   \(5 + 2*x)                                             (5 + 2*x) /
$$16 \left(- 32 \log{\left(2 x + 5 \right)} \cos{\left(8 x \right)} - \frac{24 \sin{\left(8 x \right)}}{2 x + 5} - \frac{6 \cos{\left(8 x \right)}}{\left(2 x + 5\right)^{2}} + \frac{\sin{\left(8 x \right)}}{\left(2 x + 5\right)^{3}}\right)$$