5 sin (3*x)*log(7*x) - 10*x
sin(3*x)^5*log(7*x) - 10*x
Differentiate term by term:
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The answer is:
5
sin (3*x) 4
-10 + --------- + 15*sin (3*x)*cos(3*x)*log(7*x)
x
/ 2 \
3 | sin (3*x) 2 2 30*cos(3*x)*sin(3*x)|
sin (3*x)*|- --------- - 45*sin (3*x)*log(7*x) + 180*cos (3*x)*log(7*x) + --------------------|
| 2 x |
\ x /
/ 3 3 2 2 \
2 | 135*sin (3*x) 2*sin (3*x) 3 2 45*sin (3*x)*cos(3*x) 540*cos (3*x)*sin(3*x)|
sin (3*x)*|- ------------- + ----------- + 1620*cos (3*x)*log(7*x) - 1755*sin (3*x)*cos(3*x)*log(7*x) - --------------------- + ----------------------|
| x 3 2 x |
\ x x /
/ 3 3 2 2 \
2 | 135*sin (3*x) 2*sin (3*x) 3 2 45*sin (3*x)*cos(3*x) 540*cos (3*x)*sin(3*x)|
sin (3*x)*|- ------------- + ----------- + 1620*cos (3*x)*log(7*x) - 1755*sin (3*x)*cos(3*x)*log(7*x) - --------------------- + ----------------------|
| x 3 2 x |
\ x x /