cos(3*x) sin (2*x)
sin(2*x)^cos(3*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
cos(3*x) / 2*cos(2*x)*cos(3*x)\
sin (2*x)*|-3*log(sin(2*x))*sin(3*x) + -------------------|
\ sin(2*x) /
/ 2 2 \
cos(3*x) |/ 2*cos(2*x)*cos(3*x)\ 12*cos(2*x)*sin(3*x) 4*cos (2*x)*cos(3*x)|
sin (2*x)*||3*log(sin(2*x))*sin(3*x) - -------------------| - 4*cos(3*x) - 9*cos(3*x)*log(sin(2*x)) - -------------------- - --------------------|
|\ sin(2*x) / sin(2*x) 2 |
\ sin (2*x) /
/ 3 / 2 \ 3 2 \
cos(3*x) | / 2*cos(2*x)*cos(3*x)\ / 2*cos(2*x)*cos(3*x)\ | 4*cos (2*x)*cos(3*x) 12*cos(2*x)*sin(3*x)| 38*cos(2*x)*cos(3*x) 16*cos (2*x)*cos(3*x) 36*cos (2*x)*sin(3*x)|
sin (2*x)*|- |3*log(sin(2*x))*sin(3*x) - -------------------| + 36*sin(3*x) + 3*|3*log(sin(2*x))*sin(3*x) - -------------------|*|4*cos(3*x) + 9*cos(3*x)*log(sin(2*x)) + -------------------- + --------------------| + 27*log(sin(2*x))*sin(3*x) - -------------------- + --------------------- + ---------------------|
| \ sin(2*x) / \ sin(2*x) / | 2 sin(2*x) | sin(2*x) 3 2 |
\ \ sin (2*x) / sin (2*x) sin (2*x) /