Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
cos(3*x) / 2*cos(2*x)*cos(3*x)\
sin (2*x)*|-3*log(sin(2*x))*sin(3*x) + -------------------|
\ sin(2*x) /
$$\left(- 3 \log{\left(\sin{\left(2 x \right)} \right)} \sin{\left(3 x \right)} + \frac{2 \cos{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) \sin^{\cos{\left(3 x \right)}}{\left(2 x \right)}$$
The second derivative
[src]
/ 2 2 \
cos(3*x) |/ 2*cos(2*x)*cos(3*x)\ 12*cos(2*x)*sin(3*x) 4*cos (2*x)*cos(3*x)|
sin (2*x)*||3*log(sin(2*x))*sin(3*x) - -------------------| - 4*cos(3*x) - 9*cos(3*x)*log(sin(2*x)) - -------------------- - --------------------|
|\ sin(2*x) / sin(2*x) 2 |
\ sin (2*x) /
$$\left(\left(3 \log{\left(\sin{\left(2 x \right)} \right)} \sin{\left(3 x \right)} - \frac{2 \cos{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)^{2} - 9 \log{\left(\sin{\left(2 x \right)} \right)} \cos{\left(3 x \right)} - 4 \cos{\left(3 x \right)} - \frac{12 \sin{\left(3 x \right)} \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} - \frac{4 \cos^{2}{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) \sin^{\cos{\left(3 x \right)}}{\left(2 x \right)}$$
The third derivative
[src]
/ 3 / 2 \ 3 2 \
cos(3*x) | / 2*cos(2*x)*cos(3*x)\ / 2*cos(2*x)*cos(3*x)\ | 4*cos (2*x)*cos(3*x) 12*cos(2*x)*sin(3*x)| 38*cos(2*x)*cos(3*x) 16*cos (2*x)*cos(3*x) 36*cos (2*x)*sin(3*x)|
sin (2*x)*|- |3*log(sin(2*x))*sin(3*x) - -------------------| + 36*sin(3*x) + 3*|3*log(sin(2*x))*sin(3*x) - -------------------|*|4*cos(3*x) + 9*cos(3*x)*log(sin(2*x)) + -------------------- + --------------------| + 27*log(sin(2*x))*sin(3*x) - -------------------- + --------------------- + ---------------------|
| \ sin(2*x) / \ sin(2*x) / | 2 sin(2*x) | sin(2*x) 3 2 |
\ \ sin (2*x) / sin (2*x) sin (2*x) /
$$\left(- \left(3 \log{\left(\sin{\left(2 x \right)} \right)} \sin{\left(3 x \right)} - \frac{2 \cos{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)^{3} + 3 \left(3 \log{\left(\sin{\left(2 x \right)} \right)} \sin{\left(3 x \right)} - \frac{2 \cos{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) \left(9 \log{\left(\sin{\left(2 x \right)} \right)} \cos{\left(3 x \right)} + 4 \cos{\left(3 x \right)} + \frac{12 \sin{\left(3 x \right)} \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} + \frac{4 \cos^{2}{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) + 27 \log{\left(\sin{\left(2 x \right)} \right)} \sin{\left(3 x \right)} + 36 \sin{\left(3 x \right)} - \frac{38 \cos{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin{\left(2 x \right)}} + \frac{36 \sin{\left(3 x \right)} \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} + \frac{16 \cos^{3}{\left(2 x \right)} \cos{\left(3 x \right)}}{\sin^{3}{\left(2 x \right)}}\right) \sin^{\cos{\left(3 x \right)}}{\left(2 x \right)}$$