Mister Exam

Derivative of sin(2cos3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*cos(3*x))
$$\sin{\left(2 \cos{\left(3 x \right)} \right)}$$
d                  
--(sin(2*cos(3*x)))
dx                 
$$\frac{d}{d x} \sin{\left(2 \cos{\left(3 x \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-6*cos(2*cos(3*x))*sin(3*x)
$$- 6 \sin{\left(3 x \right)} \cos{\left(2 \cos{\left(3 x \right)} \right)}$$
The second derivative [src]
    /                                2                     \
-18*\cos(2*cos(3*x))*cos(3*x) + 2*sin (3*x)*sin(2*cos(3*x))/
$$- 18 \cdot \left(2 \sin^{2}{\left(3 x \right)} \sin{\left(2 \cos{\left(3 x \right)} \right)} + \cos{\left(3 x \right)} \cos{\left(2 \cos{\left(3 x \right)} \right)}\right)$$
The third derivative [src]
   /                                   2                                       \         
54*\-6*cos(3*x)*sin(2*cos(3*x)) + 4*sin (3*x)*cos(2*cos(3*x)) + cos(2*cos(3*x))/*sin(3*x)
$$54 \cdot \left(4 \sin^{2}{\left(3 x \right)} \cos{\left(2 \cos{\left(3 x \right)} \right)} - 6 \sin{\left(2 \cos{\left(3 x \right)} \right)} \cos{\left(3 x \right)} + \cos{\left(2 \cos{\left(3 x \right)} \right)}\right) \sin{\left(3 x \right)}$$
The graph
Derivative of sin(2cos3x)