Mister Exam

Derivative of sh(x)cos(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sinh(x)*cos(3*x)
$$\cos{\left(3 x \right)} \sinh{\left(x \right)}$$
d                   
--(sinh(x)*cos(3*x))
dx                  
$$\frac{d}{d x} \cos{\left(3 x \right)} \sinh{\left(x \right)}$$
The graph
The first derivative [src]
cos(3*x)*cosh(x) - 3*sin(3*x)*sinh(x)
$$- 3 \sin{\left(3 x \right)} \sinh{\left(x \right)} + \cos{\left(3 x \right)} \cosh{\left(x \right)}$$
The second derivative [src]
-2*(3*cosh(x)*sin(3*x) + 4*cos(3*x)*sinh(x))
$$- 2 \cdot \left(3 \sin{\left(3 x \right)} \cosh{\left(x \right)} + 4 \cos{\left(3 x \right)} \sinh{\left(x \right)}\right)$$
The third derivative [src]
2*(-13*cos(3*x)*cosh(x) + 9*sin(3*x)*sinh(x))
$$2 \cdot \left(9 \sin{\left(3 x \right)} \sinh{\left(x \right)} - 13 \cos{\left(3 x \right)} \cosh{\left(x \right)}\right)$$
4-я производная [src]
4*(7*cos(3*x)*sinh(x) + 24*cosh(x)*sin(3*x))
$$4 \cdot \left(24 \sin{\left(3 x \right)} \cosh{\left(x \right)} + 7 \cos{\left(3 x \right)} \sinh{\left(x \right)}\right)$$
The graph
Derivative of sh(x)cos(3x)