Mister Exam

Other calculators

Derivative of (7+2*cos(x))*sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(7 + 2*cos(x))*sin(x)
(2cos(x)+7)sin(x)\left(2 \cos{\left(x \right)} + 7\right) \sin{\left(x \right)}
(7 + 2*cos(x))*sin(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2cos(x)+7f{\left(x \right)} = 2 \cos{\left(x \right)} + 7; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2cos(x)+72 \cos{\left(x \right)} + 7 term by term:

      1. The derivative of the constant 77 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        So, the result is: 2sin(x)- 2 \sin{\left(x \right)}

      The result is: 2sin(x)- 2 \sin{\left(x \right)}

    g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result is: (2cos(x)+7)cos(x)2sin2(x)\left(2 \cos{\left(x \right)} + 7\right) \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)}

  2. Now simplify:

    7cos(x)+2cos(2x)7 \cos{\left(x \right)} + 2 \cos{\left(2 x \right)}


The answer is:

7cos(x)+2cos(2x)7 \cos{\left(x \right)} + 2 \cos{\left(2 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
       2                           
- 2*sin (x) + (7 + 2*cos(x))*cos(x)
(2cos(x)+7)cos(x)2sin2(x)\left(2 \cos{\left(x \right)} + 7\right) \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)}
The second derivative [src]
-(7 + 8*cos(x))*sin(x)
(8cos(x)+7)sin(x)- \left(8 \cos{\left(x \right)} + 7\right) \sin{\left(x \right)}
The third derivative [src]
       2           2                           
- 6*cos (x) + 8*sin (x) - (7 + 2*cos(x))*cos(x)
(2cos(x)+7)cos(x)+8sin2(x)6cos2(x)- \left(2 \cos{\left(x \right)} + 7\right) \cos{\left(x \right)} + 8 \sin^{2}{\left(x \right)} - 6 \cos^{2}{\left(x \right)}