Mister Exam

Derivative of sen3x/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(3*x)
--------
   x    
$$\frac{\sin{\left(3 x \right)}}{x}$$
sin(3*x)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  sin(3*x)   3*cos(3*x)
- -------- + ----------
      2          x     
     x                 
$$\frac{3 \cos{\left(3 x \right)}}{x} - \frac{\sin{\left(3 x \right)}}{x^{2}}$$
The second derivative [src]
              6*cos(3*x)   2*sin(3*x)
-9*sin(3*x) - ---------- + ----------
                  x             2    
                               x     
-------------------------------------
                  x                  
$$\frac{- 9 \sin{\left(3 x \right)} - \frac{6 \cos{\left(3 x \right)}}{x} + \frac{2 \sin{\left(3 x \right)}}{x^{2}}}{x}$$
The third derivative [src]
  /              2*sin(3*x)   6*cos(3*x)   9*sin(3*x)\
3*|-9*cos(3*x) - ---------- + ---------- + ----------|
  |                   3            2           x     |
  \                  x            x                  /
------------------------------------------------------
                          x                           
$$\frac{3 \left(- 9 \cos{\left(3 x \right)} + \frac{9 \sin{\left(3 x \right)}}{x} + \frac{6 \cos{\left(3 x \right)}}{x^{2}} - \frac{2 \sin{\left(3 x \right)}}{x^{3}}\right)}{x}$$