Mister Exam

Other calculators

Derivative of secxcosx/log(tanx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sec(x)*cos(x)
-------------
 log(tan(x)) 
cos(x)sec(x)log(tan(x))\frac{\cos{\left(x \right)} \sec{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}}
(sec(x)*cos(x))/log(tan(x))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=cos(x)sec(x)f{\left(x \right)} = \cos{\left(x \right)} \sec{\left(x \right)} and g(x)=log(tan(x))g{\left(x \right)} = \log{\left(\tan{\left(x \right)} \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      g(x)=sec(x)g{\left(x \right)} = \sec{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result is: sin(x)sec(x)+sin(x)cos(x)- \sin{\left(x \right)} \sec{\left(x \right)} + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=tan(x)u = \tan{\left(x \right)}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result of the chain rule is:

      sin2(x)+cos2(x)cos2(x)tan(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan{\left(x \right)}}

    Now plug in to the quotient rule:

    (sin(x)sec(x)+sin(x)cos(x))log(tan(x))(sin2(x)+cos2(x))sec(x)cos(x)tan(x)log(tan(x))2\frac{\left(- \sin{\left(x \right)} \sec{\left(x \right)} + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) \log{\left(\tan{\left(x \right)} \right)} - \frac{\left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \sec{\left(x \right)}}{\cos{\left(x \right)} \tan{\left(x \right)}}}{\log{\left(\tan{\left(x \right)} \right)}^{2}}

  2. Now simplify:

    2log(tan(x))2sin(2x)- \frac{2}{\log{\left(\tan{\left(x \right)} \right)}^{2} \sin{\left(2 x \right)}}


The answer is:

2log(tan(x))2sin(2x)- \frac{2}{\log{\left(\tan{\left(x \right)} \right)}^{2} \sin{\left(2 x \right)}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
                                        /       2   \              
-sec(x)*sin(x) + cos(x)*sec(x)*tan(x)   \1 + tan (x)/*cos(x)*sec(x)
------------------------------------- - ---------------------------
             log(tan(x))                       2                   
                                            log (tan(x))*tan(x)    
sin(x)sec(x)+cos(x)tan(x)sec(x)log(tan(x))(tan2(x)+1)cos(x)sec(x)log(tan(x))2tan(x)\frac{- \sin{\left(x \right)} \sec{\left(x \right)} + \cos{\left(x \right)} \tan{\left(x \right)} \sec{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \sec{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}^{2} \tan{\left(x \right)}}
The second derivative [src]
/                                                                   /            2          /       2   \  \                                                   \       
|                                                     /       2   \ |     1 + tan (x)     2*\1 + tan (x)/  |                                                   |       
|                                                     \1 + tan (x)/*|-2 + ----------- + -------------------|*cos(x)                                            |       
|                                                                   |          2                       2   |            /       2   \                          |       
|          /         2   \                                          \       tan (x)     log(tan(x))*tan (x)/          2*\1 + tan (x)/*(-cos(x)*tan(x) + sin(x))|       
|-cos(x) + \1 + 2*tan (x)/*cos(x) - 2*sin(x)*tan(x) + ------------------------------------------------------------- + -----------------------------------------|*sec(x)
\                                                                              log(tan(x))                                        log(tan(x))*tan(x)           /       
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                              log(tan(x))                                                                              
(2(sin(x)cos(x)tan(x))(tan2(x)+1)log(tan(x))tan(x)+(tan2(x)+1)(tan2(x)+1tan2(x)+2(tan2(x)+1)log(tan(x))tan2(x)2)cos(x)log(tan(x))+(2tan2(x)+1)cos(x)2sin(x)tan(x)cos(x))sec(x)log(tan(x))\frac{\left(\frac{2 \left(\sin{\left(x \right)} - \cos{\left(x \right)} \tan{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} - 2\right) \cos{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}} + \left(2 \tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} - 2 \sin{\left(x \right)} \tan{\left(x \right)} - \cos{\left(x \right)}\right) \sec{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}}
The third derivative [src]
/                                                                                                                                                                                    /                        2                                                           2                     2  \                                                                                        \       
|                                                                                                                         /            2          /       2   \  \                   |           /       2   \      /       2   \      /       2   \         /       2   \         /       2   \   |                                                                                        |       
|                                                                                 /       2   \                           |     1 + tan (x)     2*\1 + tan (x)/  |     /       2   \ |           \1 + tan (x)/    2*\1 + tan (x)/    6*\1 + tan (x)/       3*\1 + tan (x)/       3*\1 + tan (x)/   |                                                                                        |       
|                                                                               3*\1 + tan (x)/*(-cos(x)*tan(x) + sin(x))*|-2 + ----------- + -------------------|   2*\1 + tan (x)/*|2*tan(x) + -------------- - --------------- - ------------------ + ------------------- + --------------------|*cos(x)                                                                                 |       
|                                                                                                                         |          2                       2   |                   |                 3               tan(x)       log(tan(x))*tan(x)                  3         2            3   |            /       2   \ /  /         2   \                                  \         |       
|    /         2   \                            /         2   \                                                           \       tan (x)     log(tan(x))*tan (x)/                   \              tan (x)                                              log(tan(x))*tan (x)   log (tan(x))*tan (x)/          3*\1 + tan (x)/*\- \1 + 2*tan (x)/*cos(x) + 2*sin(x)*tan(x) + cos(x)/         |       
|- 3*\1 + 2*tan (x)/*sin(x) - 3*cos(x)*tan(x) + \5 + 6*tan (x)/*cos(x)*tan(x) - ---------------------------------------------------------------------------------- - -------------------------------------------------------------------------------------------------------------------------------------- + --------------------------------------------------------------------- + sin(x)|*sec(x)
\                                                                                                                  log(tan(x))                                                                                                    log(tan(x))                                                                                           log(tan(x))*tan(x)                                  /       
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                            log(tan(x))                                                                                                                                                                                             
(3(sin(x)cos(x)tan(x))(tan2(x)+1)(tan2(x)+1tan2(x)+2(tan2(x)+1)log(tan(x))tan2(x)2)log(tan(x))+3(tan2(x)+1)((2tan2(x)+1)cos(x)+2sin(x)tan(x)+cos(x))log(tan(x))tan(x)2(tan2(x)+1)((tan2(x)+1)2tan3(x)+3(tan2(x)+1)2log(tan(x))tan3(x)+3(tan2(x)+1)2log(tan(x))2tan3(x)2(tan2(x)+1)tan(x)6(tan2(x)+1)log(tan(x))tan(x)+2tan(x))cos(x)log(tan(x))3(2tan2(x)+1)sin(x)+(6tan2(x)+5)cos(x)tan(x)+sin(x)3cos(x)tan(x))sec(x)log(tan(x))\frac{\left(- \frac{3 \left(\sin{\left(x \right)} - \cos{\left(x \right)} \tan{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} - 2\right)}{\log{\left(\tan{\left(x \right)} \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(- \left(2 \tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} + 2 \sin{\left(x \right)} \tan{\left(x \right)} + \cos{\left(x \right)}\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + 2 \tan{\left(x \right)}\right) \cos{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}} - 3 \left(2 \tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + \left(6 \tan^{2}{\left(x \right)} + 5\right) \cos{\left(x \right)} \tan{\left(x \right)} + \sin{\left(x \right)} - 3 \cos{\left(x \right)} \tan{\left(x \right)}\right) \sec{\left(x \right)}}{\log{\left(\tan{\left(x \right)} \right)}}