Mister Exam

Other calculators

Derivative of sech(x^2+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    / 2    \
sech\x  + 2/
$$\operatorname{sech}{\left(x^{2} + 2 \right)}$$
sech(x^2 + 2)
The graph
The first derivative [src]
         / 2    \     / 2    \
-2*x*sech\x  + 2/*tanh\x  + 2/
$$- 2 x \tanh{\left(x^{2} + 2 \right)} \operatorname{sech}{\left(x^{2} + 2 \right)}$$
The second derivative [src]
  /      /     2\      2     2/     2\      2 /         2/     2\\\     /     2\
2*\- tanh\2 + x / + 2*x *tanh \2 + x / + 2*x *\-1 + tanh \2 + x ///*sech\2 + x /
$$2 \left(2 x^{2} \left(\tanh^{2}{\left(x^{2} + 2 \right)} - 1\right) + 2 x^{2} \tanh^{2}{\left(x^{2} + 2 \right)} - \tanh{\left(x^{2} + 2 \right)}\right) \operatorname{sech}{\left(x^{2} + 2 \right)}$$
The third derivative [src]
    /           2/     2\      2     3/     2\       2 /         2/     2\\     /     2\\     /     2\
4*x*\-3 + 6*tanh \2 + x / - 2*x *tanh \2 + x / - 10*x *\-1 + tanh \2 + x //*tanh\2 + x //*sech\2 + x /
$$4 x \left(- 10 x^{2} \left(\tanh^{2}{\left(x^{2} + 2 \right)} - 1\right) \tanh{\left(x^{2} + 2 \right)} - 2 x^{2} \tanh^{3}{\left(x^{2} + 2 \right)} + 6 \tanh^{2}{\left(x^{2} + 2 \right)} - 3\right) \operatorname{sech}{\left(x^{2} + 2 \right)}$$