The first derivative
[src]
/ 2 \ / 2 \
-2*x*sech\x + 2/*tanh\x + 2/
$$- 2 x \tanh{\left(x^{2} + 2 \right)} \operatorname{sech}{\left(x^{2} + 2 \right)}$$
The second derivative
[src]
/ / 2\ 2 2/ 2\ 2 / 2/ 2\\\ / 2\
2*\- tanh\2 + x / + 2*x *tanh \2 + x / + 2*x *\-1 + tanh \2 + x ///*sech\2 + x /
$$2 \left(2 x^{2} \left(\tanh^{2}{\left(x^{2} + 2 \right)} - 1\right) + 2 x^{2} \tanh^{2}{\left(x^{2} + 2 \right)} - \tanh{\left(x^{2} + 2 \right)}\right) \operatorname{sech}{\left(x^{2} + 2 \right)}$$
The third derivative
[src]
/ 2/ 2\ 2 3/ 2\ 2 / 2/ 2\\ / 2\\ / 2\
4*x*\-3 + 6*tanh \2 + x / - 2*x *tanh \2 + x / - 10*x *\-1 + tanh \2 + x //*tanh\2 + x //*sech\2 + x /
$$4 x \left(- 10 x^{2} \left(\tanh^{2}{\left(x^{2} + 2 \right)} - 1\right) \tanh{\left(x^{2} + 2 \right)} - 2 x^{2} \tanh^{3}{\left(x^{2} + 2 \right)} + 6 \tanh^{2}{\left(x^{2} + 2 \right)} - 3\right) \operatorname{sech}{\left(x^{2} + 2 \right)}$$