Mister Exam

Derivative of sech⁻¹2x+sinh⁻¹x²

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    12          1   
sech  (x) + sinh (x)
$$\sinh^{1}{\left(x \right)} + \operatorname{sech}^{12}{\left(x \right)}$$
sech(x)^12 + sinh(x)^1
The graph
The first derivative [src]
         12                     
- 12*sech  (x)*tanh(x) + cosh(x)
$$\cosh{\left(x \right)} - 12 \tanh{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$
The second derivative [src]
       12    /         2   \           12        2             
12*sech  (x)*\-1 + tanh (x)/ + 144*sech  (x)*tanh (x) + sinh(x)
$$12 \left(\tanh^{2}{\left(x \right)} - 1\right) \operatorname{sech}^{12}{\left(x \right)} + \sinh{\left(x \right)} + 144 \tanh^{2}{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$
The third derivative [src]
           12        3              12    /         2   \                  
- 1728*sech  (x)*tanh (x) - 456*sech  (x)*\-1 + tanh (x)/*tanh(x) + cosh(x)
$$- 456 \left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)} + \cosh{\left(x \right)} - 1728 \tanh^{3}{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$