The first derivative
[src]
12
- 12*sech (x)*tanh(x) + cosh(x)
$$\cosh{\left(x \right)} - 12 \tanh{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$
The second derivative
[src]
12 / 2 \ 12 2
12*sech (x)*\-1 + tanh (x)/ + 144*sech (x)*tanh (x) + sinh(x)
$$12 \left(\tanh^{2}{\left(x \right)} - 1\right) \operatorname{sech}^{12}{\left(x \right)} + \sinh{\left(x \right)} + 144 \tanh^{2}{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$
The third derivative
[src]
12 3 12 / 2 \
- 1728*sech (x)*tanh (x) - 456*sech (x)*\-1 + tanh (x)/*tanh(x) + cosh(x)
$$- 456 \left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)} + \cosh{\left(x \right)} - 1728 \tanh^{3}{\left(x \right)} \operatorname{sech}^{12}{\left(x \right)}$$