Mister Exam

Other calculators


(sec(x))^2-1

Derivative of (sec(x))^2-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       
sec (x) - 1
sec2(x)1\sec^{2}{\left(x \right)} - 1
d /   2       \
--\sec (x) - 1/
dx             
ddx(sec2(x)1)\frac{d}{d x} \left(\sec^{2}{\left(x \right)} - 1\right)
Detail solution
  1. Differentiate sec2(x)1\sec^{2}{\left(x \right)} - 1 term by term:

    1. Let u=sec(x)u = \sec{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsec(x)\frac{d}{d x} \sec{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result of the chain rule is:

      2sin(x)sec(x)cos2(x)\frac{2 \sin{\left(x \right)} \sec{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    4. The derivative of the constant (1)1\left(-1\right) 1 is zero.

    The result is: 2sin(x)sec(x)cos2(x)\frac{2 \sin{\left(x \right)} \sec{\left(x \right)}}{\cos^{2}{\left(x \right)}}

  2. Now simplify:

    2sin(x)cos3(x)\frac{2 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}


The answer is:

2sin(x)cos3(x)\frac{2 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-100000100000
The first derivative [src]
     2          
2*sec (x)*tan(x)
2tan(x)sec2(x)2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}
The second derivative [src]
     2    /         2   \
2*sec (x)*\1 + 3*tan (x)/
2(3tan2(x)+1)sec2(x)2 \cdot \left(3 \tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}
The third derivative [src]
     2    /         2   \       
8*sec (x)*\2 + 3*tan (x)/*tan(x)
8(3tan2(x)+2)tan(x)sec2(x)8 \cdot \left(3 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)} \sec^{2}{\left(x \right)}
The graph
Derivative of (sec(x))^2-1