Mister Exam

Derivative of sec^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3   
sec (x)
sec3(x)\sec^{3}{\left(x \right)}
d /   3   \
--\sec (x)/
dx         
ddxsec3(x)\frac{d}{d x} \sec^{3}{\left(x \right)}
Detail solution
  1. Let u=sec(x)u = \sec{\left(x \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxsec(x)\frac{d}{d x} \sec{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

    2. Let u=cos(x)u = \cos{\left(x \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result of the chain rule is:

    3sin(x)sec2(x)cos2(x)\frac{3 \sin{\left(x \right)} \sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

  4. Now simplify:

    3sin(x)cos4(x)\frac{3 \sin{\left(x \right)}}{\cos^{4}{\left(x \right)}}


The answer is:

3sin(x)cos4(x)\frac{3 \sin{\left(x \right)}}{\cos^{4}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-50000005000000
The first derivative [src]
     3          
3*sec (x)*tan(x)
3tan(x)sec3(x)3 \tan{\left(x \right)} \sec^{3}{\left(x \right)}
The second derivative [src]
     3    /         2   \
3*sec (x)*\1 + 4*tan (x)/
3(4tan2(x)+1)sec3(x)3 \cdot \left(4 \tan^{2}{\left(x \right)} + 1\right) \sec^{3}{\left(x \right)}
The third derivative [src]
     3    /           2   \       
3*sec (x)*\11 + 20*tan (x)/*tan(x)
3(20tan2(x)+11)tan(x)sec3(x)3 \cdot \left(20 \tan^{2}{\left(x \right)} + 11\right) \tan{\left(x \right)} \sec^{3}{\left(x \right)}
The graph
Derivative of sec^3x