Mister Exam

Derivative of sec5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sec(5*x)
sec(5x)\sec{\left(5 x \right)}
Detail solution
  1. Rewrite the function to be differentiated:

    sec(5x)=1cos(5x)\sec{\left(5 x \right)} = \frac{1}{\cos{\left(5 x \right)}}

  2. Let u=cos(5x)u = \cos{\left(5 x \right)}.

  3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  4. Then, apply the chain rule. Multiply by ddxcos(5x)\frac{d}{d x} \cos{\left(5 x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5sin(5x)- 5 \sin{\left(5 x \right)}

    The result of the chain rule is:

    5sin(5x)cos2(5x)\frac{5 \sin{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}


The answer is:

5sin(5x)cos2(5x)\frac{5 \sin{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
5*sec(5*x)*tan(5*x)
5tan(5x)sec(5x)5 \tan{\left(5 x \right)} \sec{\left(5 x \right)}
The second derivative [src]
   /         2     \         
25*\1 + 2*tan (5*x)/*sec(5*x)
25(2tan2(5x)+1)sec(5x)25 \left(2 \tan^{2}{\left(5 x \right)} + 1\right) \sec{\left(5 x \right)}
The third derivative [src]
    /         2     \                  
125*\5 + 6*tan (5*x)/*sec(5*x)*tan(5*x)
125(6tan2(5x)+5)tan(5x)sec(5x)125 \left(6 \tan^{2}{\left(5 x \right)} + 5\right) \tan{\left(5 x \right)} \sec{\left(5 x \right)}
The graph
Derivative of sec5x