Mister Exam

Other calculators

Derivative of с^(sin(a*x+b))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(a*x + b)
c            
csin(ax+b)c^{\sin{\left(a x + b \right)}}
c^sin(a*x + b)
Detail solution
  1. Let u=sin(ax+b)u = \sin{\left(a x + b \right)}.

  2. ucu=culog(c)\frac{\partial}{\partial u} c^{u} = c^{u} \log{\left(c \right)}

  3. Then, apply the chain rule. Multiply by xsin(ax+b)\frac{\partial}{\partial x} \sin{\left(a x + b \right)}:

    1. Let u=ax+bu = a x + b.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by x(ax+b)\frac{\partial}{\partial x} \left(a x + b\right):

      1. Differentiate ax+ba x + b term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: aa

        2. The derivative of the constant bb is zero.

        The result is: aa

      The result of the chain rule is:

      acos(ax+b)a \cos{\left(a x + b \right)}

    The result of the chain rule is:

    acsin(ax+b)log(c)cos(ax+b)a c^{\sin{\left(a x + b \right)}} \log{\left(c \right)} \cos{\left(a x + b \right)}

  4. Now simplify:

    acsin(ax+b)log(c)cos(ax+b)a c^{\sin{\left(a x + b \right)}} \log{\left(c \right)} \cos{\left(a x + b \right)}


The answer is:

acsin(ax+b)log(c)cos(ax+b)a c^{\sin{\left(a x + b \right)}} \log{\left(c \right)} \cos{\left(a x + b \right)}

The first derivative [src]
   sin(a*x + b)                    
a*c            *cos(a*x + b)*log(c)
acsin(ax+b)log(c)cos(ax+b)a c^{\sin{\left(a x + b \right)}} \log{\left(c \right)} \cos{\left(a x + b \right)}
The second derivative [src]
 2  sin(b + a*x) /                   2                \       
a *c            *\-sin(b + a*x) + cos (b + a*x)*log(c)/*log(c)
a2csin(ax+b)(log(c)cos2(ax+b)sin(ax+b))log(c)a^{2} c^{\sin{\left(a x + b \right)}} \left(\log{\left(c \right)} \cos^{2}{\left(a x + b \right)} - \sin{\left(a x + b \right)}\right) \log{\left(c \right)}
The third derivative [src]
 3  sin(b + a*x) /        2             2                           \                    
a *c            *\-1 + cos (b + a*x)*log (c) - 3*log(c)*sin(b + a*x)/*cos(b + a*x)*log(c)
a3csin(ax+b)(log(c)2cos2(ax+b)3log(c)sin(ax+b)1)log(c)cos(ax+b)a^{3} c^{\sin{\left(a x + b \right)}} \left(\log{\left(c \right)}^{2} \cos^{2}{\left(a x + b \right)} - 3 \log{\left(c \right)} \sin{\left(a x + b \right)} - 1\right) \log{\left(c \right)} \cos{\left(a x + b \right)}