Mister Exam

Other calculators

Derivative of (с*x+c)^e^(-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         / -2*x\
         \e    /
(c*x + c)       
$$\left(c x + c\right)^{e^{- 2 x}}$$
  /         / -2*x\\
d |         \e    /|
--\(c*x + c)       /
dx                  
$$\frac{\partial}{\partial x} \left(c x + c\right)^{e^{- 2 x}}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The first derivative [src]
         / -2*x\ /                            -2*x\
         \e    / |     -2*x                c*e    |
(c*x + c)       *|- 2*e    *log(c*x + c) + -------|
                 \                         c*x + c/
$$\left(c x + c\right)^{e^{- 2 x}} \left(\frac{c e^{- 2 x}}{c x + c} - 2 e^{- 2 x} \log{\left(c x + c \right)}\right)$$
The second derivative [src]
           / -2*x\ /                                                                  2      \      
           \e    / |     1         4                        /  1                     \   -2*x|  -2*x
(c*(1 + x))       *|- -------- - ----- + 4*log(c*(1 + x)) + |----- - 2*log(c*(1 + x))| *e    |*e    
                   |         2   1 + x                      \1 + x                   /       |      
                   \  (1 + x)                                                                /      
$$\left(c \left(x + 1\right)\right)^{e^{- 2 x}} \left(\left(- 2 \log{\left(c \left(x + 1\right) \right)} + \frac{1}{x + 1}\right)^{2} e^{- 2 x} + 4 \log{\left(c \left(x + 1\right) \right)} - \frac{4}{x + 1} - \frac{1}{\left(x + 1\right)^{2}}\right) e^{- 2 x}$$
The third derivative [src]
           / -2*x\ /                                                                            3                                                                                 \      
           \e    / |                       2          6         12    /  1                     \   -4*x     /  1                     \ /   1                            4  \  -2*x|  -2*x
(c*(1 + x))       *|-8*log(c*(1 + x)) + -------- + -------- + ----- + |----- - 2*log(c*(1 + x))| *e     - 3*|----- - 2*log(c*(1 + x))|*|-------- - 4*log(c*(1 + x)) + -----|*e    |*e    
                   |                           3          2   1 + x   \1 + x                   /            \1 + x                   / |       2                      1 + x|      |      
                   \                    (1 + x)    (1 + x)                                                                             \(1 + x)                            /      /      
$$\left(c \left(x + 1\right)\right)^{e^{- 2 x}} \left(\left(- 2 \log{\left(c \left(x + 1\right) \right)} + \frac{1}{x + 1}\right)^{3} e^{- 4 x} - 3 \left(- 2 \log{\left(c \left(x + 1\right) \right)} + \frac{1}{x + 1}\right) \left(- 4 \log{\left(c \left(x + 1\right) \right)} + \frac{4}{x + 1} + \frac{1}{\left(x + 1\right)^{2}}\right) e^{- 2 x} - 8 \log{\left(c \left(x + 1\right) \right)} + \frac{12}{x + 1} + \frac{6}{\left(x + 1\right)^{2}} + \frac{2}{\left(x + 1\right)^{3}}\right) e^{- 2 x}$$