Mister Exam

Derivative of root(x-1)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______
\/ x - 1 
---------
    x    
$$\frac{\sqrt{x - 1}}{x}$$
sqrt(x - 1)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                  _______
      1         \/ x - 1 
------------- - ---------
      _______        2   
2*x*\/ x - 1        x    
$$\frac{1}{2 x \sqrt{x - 1}} - \frac{\sqrt{x - 1}}{x^{2}}$$
The second derivative [src]
                                     ________
        1              1         2*\/ -1 + x 
- ------------- - ------------ + ------------
            3/2       ________         2     
  4*(-1 + x)      x*\/ -1 + x         x      
---------------------------------------------
                      x                      
$$\frac{- \frac{1}{4 \left(x - 1\right)^{\frac{3}{2}}} - \frac{1}{x \sqrt{x - 1}} + \frac{2 \sqrt{x - 1}}{x^{2}}}{x}$$
The third derivative [src]
  /                                    ________                  \
  |      1               1         2*\/ -1 + x           1       |
3*|------------- + ------------- - ------------ + ---------------|
  |          5/2    2   ________         3                    3/2|
  \8*(-1 + x)      x *\/ -1 + x         x         4*x*(-1 + x)   /
------------------------------------------------------------------
                                x                                 
$$\frac{3 \left(\frac{1}{8 \left(x - 1\right)^{\frac{5}{2}}} + \frac{1}{4 x \left(x - 1\right)^{\frac{3}{2}}} + \frac{1}{x^{2} \sqrt{x - 1}} - \frac{2 \sqrt{x - 1}}{x^{3}}\right)}{x}$$