Mister Exam

Other calculators

Derivative of root^4(2x^2+6)^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             1024
   __________    
  /    2         
\/  2*x  + 6     
(2x2+6)1024\left(\sqrt{2 x^{2} + 6}\right)^{1024}
Detail solution
  1. Let u=2x2+6u = \sqrt{2 x^{2} + 6}.

  2. Apply the power rule: u1024u^{1024} goes to 1024u10231024 u^{1023}

  3. Then, apply the chain rule. Multiply by ddx2x2+6\frac{d}{d x} \sqrt{2 x^{2} + 6}:

    1. Let u=2x2+6u = 2 x^{2} + 6.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(2x2+6)\frac{d}{d x} \left(2 x^{2} + 6\right):

      1. Differentiate 2x2+62 x^{2} + 6 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 4x4 x

        2. The derivative of the constant 66 is zero.

        The result is: 4x4 x

      The result of the chain rule is:

      2x2x2+6\frac{2 x}{\sqrt{2 x^{2} + 6}}

    The result of the chain rule is:

    2048x(2x2+6)5112048 x \left(2 x^{2} + 6\right)^{511}

  4. Now simplify:

    13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304x(x2+3)51113729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304 x \left(x^{2} + 3\right)^{511}


The answer is:

13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304x(x2+3)51113729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304 x \left(x^{2} + 3\right)^{511}

The first derivative [src]
                 512
       /   2    \   
2048*x*\2*x  + 6/   
--------------------
         2          
      2*x  + 6      
2048x(2x2+6)5122x2+6\frac{2048 x \left(2 x^{2} + 6\right)^{512}}{2 x^{2} + 6}
The second derivative [src]
                                                                                                                                                                       510              
                                                                                                                                                               /     2\    /          2\
13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304*\3 + x /   *\3 + 1023*x /
13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304(x2+3)510(1023x2+3)13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114304 \left(x^{2} + 3\right)^{510} \left(1023 x^{2} + 3\right)
The third derivative [src]
                                                                                                                                                                            509             
                                                                                                                                                                    /     2\    /         2\
42094939251920898772269015699967103208296177260478748770406849931725750800594426911615535716536039331120780981452560621483632030414262459858703941481117530456064*x*\3 + x /   *\3 + 341*x /
42094939251920898772269015699967103208296177260478748770406849931725750800594426911615535716536039331120780981452560621483632030414262459858703941481117530456064x(x2+3)509(341x2+3)42094939251920898772269015699967103208296177260478748770406849931725750800594426911615535716536039331120780981452560621483632030414262459858703941481117530456064 x \left(x^{2} + 3\right)^{509} \left(341 x^{2} + 3\right)