Mister Exam

Other calculators

Derivative of (pi*arctg(x))/(arctg(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
pi*atan(x)
----------
 atan(x)  
$$\frac{\pi \operatorname{atan}{\left(x \right)}}{\operatorname{atan}{\left(x \right)}}$$
(pi*atan(x))/atan(x)
The graph
The first derivative [src]
0
$$0$$
The second derivative [src]
0
$$0$$
The third derivative [src]
     /                                           /       1   \ \
     |                                         3*|x + -------| |
     |          3                 3*x            \    atan(x)/ |
2*pi*|- ----------------- - ---------------- + ----------------|
     |  /     2\     2      /     2\           /     2\        |
     \  \1 + x /*atan (x)   \1 + x /*atan(x)   \1 + x /*atan(x)/
----------------------------------------------------------------
                               2                                
                       /     2\                                 
                       \1 + x / *atan(x)                        
$$\frac{2 \pi \left(- \frac{3 x}{\left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}} + \frac{3 \left(x + \frac{1}{\operatorname{atan}{\left(x \right)}}\right)}{\left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}} - \frac{3}{\left(x^{2} + 1\right) \operatorname{atan}^{2}{\left(x \right)}}\right)}{\left(x^{2} + 1\right)^{2} \operatorname{atan}{\left(x \right)}}$$