___________ / ___ (1 + x)*\/ 1 + \/ x
(1 + x)*sqrt(1 + sqrt(x))
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
___________ / ___ 1 + x \/ 1 + \/ x + ---------------------- ___________ ___ / ___ 4*\/ x *\/ 1 + \/ x
8 / 2 1 \ ----- - (1 + x)*|---- + -------------| ___ | 3/2 / ___\| \/ x \x x*\1 + \/ x // -------------------------------------- ___________ / ___ 16*\/ 1 + \/ x
/ 8 / 4 1 2 \ 4 \ 3*|- ---- + (1 + x)*|---- + ----------------- + --------------| - -------------| | 3/2 | 5/2 2 2 / ___\| / ___\| | x |x 3/2 / ___\ x *\1 + \/ x /| x*\1 + \/ x /| \ \ x *\1 + \/ x / / / -------------------------------------------------------------------------------- ___________ / ___ 64*\/ 1 + \/ x