cot(x) (1 + tan(x))
(1 + tan(x))^cot(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
/ / 2 \ \
cot(x) |/ 2 \ \1 + tan (x)/*cot(x)|
(1 + tan(x)) *|\-1 - cot (x)/*log(1 + tan(x)) + --------------------|
\ 1 + tan(x) /
/ 2 2 \
|/ / 2 \ \ / 2 \ / 2 \ / 2 \ / 2 \ |
cot(x) ||/ 2 \ \1 + tan (x)/*cot(x)| \1 + tan (x)/ *cot(x) 2*\1 + cot (x)/*\1 + tan (x)/ / 2 \ 2*\1 + tan (x)/*cot(x)*tan(x)|
(1 + tan(x)) *||\1 + cot (x)/*log(1 + tan(x)) - --------------------| - --------------------- - ----------------------------- + 2*\1 + cot (x)/*cot(x)*log(1 + tan(x)) + -----------------------------|
|\ 1 + tan(x) / 2 1 + tan(x) 1 + tan(x) |
\ (1 + tan(x)) /
/ 3 / 2 \ 2 3 2 2 \
| / / 2 \ \ / / 2 \ \ | / 2 \ / 2 \ / 2 \ / 2 \ | 2 / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ 2 / 2 \ / 2 \ / 2 \ |
cot(x) | |/ 2 \ \1 + tan (x)/*cot(x)| |/ 2 \ \1 + tan (x)/*cot(x)| | \1 + tan (x)/ *cot(x) 2*\1 + cot (x)/*\1 + tan (x)/ / 2 \ 2*\1 + tan (x)/*cot(x)*tan(x)| / 2 \ 2 / 2 \ 2*\1 + tan (x)/ *cot(x) 2*\1 + tan (x)/ *cot(x) 3*\1 + tan (x)/ *\1 + cot (x)/ 6*\1 + tan (x)/ *cot(x)*tan(x) 6*\1 + cot (x)/*\1 + tan (x)/*tan(x) 4*tan (x)*\1 + tan (x)/*cot(x) 6*\1 + cot (x)/*\1 + tan (x)/*cot(x)|
(1 + tan(x)) *|- |\1 + cot (x)/*log(1 + tan(x)) - --------------------| - 3*|\1 + cot (x)/*log(1 + tan(x)) - --------------------|*|- --------------------- - ----------------------------- + 2*\1 + cot (x)/*cot(x)*log(1 + tan(x)) + -----------------------------| - 2*\1 + cot (x)/ *log(1 + tan(x)) - 4*cot (x)*\1 + cot (x)/*log(1 + tan(x)) + ----------------------- + ----------------------- + ------------------------------ - ------------------------------ - ------------------------------------ + ------------------------------ + ------------------------------------|
| \ 1 + tan(x) / \ 1 + tan(x) / | 2 1 + tan(x) 1 + tan(x) | 1 + tan(x) 3 2 2 1 + tan(x) 1 + tan(x) 1 + tan(x) |
\ \ (1 + tan(x)) / (1 + tan(x)) (1 + tan(x)) (1 + tan(x)) /