Mister Exam

Derivative of (1+tgx)^ctgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            cot(x)
(1 + tan(x))      
$$\left(\tan{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
(1 + tan(x))^cot(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
                   /                                 /       2   \       \
            cot(x) |/        2   \                   \1 + tan (x)/*cot(x)|
(1 + tan(x))      *|\-1 - cot (x)/*log(1 + tan(x)) + --------------------|
                   \                                      1 + tan(x)     /
$$\left(\left(- \cot^{2}{\left(x \right)} - 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} + \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)} + 1}\right) \left(\tan{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
The second derivative [src]
                   /                                                      2                2                                                                                                                \
                   |/                                /       2   \       \    /       2   \             /       2   \ /       2   \                                              /       2   \              |
            cot(x) ||/       2   \                   \1 + tan (x)/*cot(x)|    \1 + tan (x)/ *cot(x)   2*\1 + cot (x)/*\1 + tan (x)/     /       2   \                          2*\1 + tan (x)/*cot(x)*tan(x)|
(1 + tan(x))      *||\1 + cot (x)/*log(1 + tan(x)) - --------------------|  - --------------------- - ----------------------------- + 2*\1 + cot (x)/*cot(x)*log(1 + tan(x)) + -----------------------------|
                   |\                                     1 + tan(x)     /                    2                 1 + tan(x)                                                               1 + tan(x)         |
                   \                                                              (1 + tan(x))                                                                                                              /
$$\left(\tan{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} \left(\left(\left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)} + 1}\right)^{2} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} \cot{\left(x \right)} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)} + 1} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)}}{\tan{\left(x \right)} + 1} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right)^{2}}\right)$$
The third derivative [src]
                   /                                                        3                                                            /               2                                                                                                                \                                                                                               2                         3                         2                                2                                                                                                                             \
                   |  /                                /       2   \       \      /                                /       2   \       \ |  /       2   \             /       2   \ /       2   \                                              /       2   \              |                  2                                                               /       2   \             /       2   \             /       2   \  /       2   \     /       2   \                    /       2   \ /       2   \               2    /       2   \            /       2   \ /       2   \       |
            cot(x) |  |/       2   \                   \1 + tan (x)/*cot(x)|      |/       2   \                   \1 + tan (x)/*cot(x)| |  \1 + tan (x)/ *cot(x)   2*\1 + cot (x)/*\1 + tan (x)/     /       2   \                          2*\1 + tan (x)/*cot(x)*tan(x)|     /       2   \                         2    /       2   \                   2*\1 + tan (x)/ *cot(x)   2*\1 + tan (x)/ *cot(x)   3*\1 + tan (x)/ *\1 + cot (x)/   6*\1 + tan (x)/ *cot(x)*tan(x)   6*\1 + cot (x)/*\1 + tan (x)/*tan(x)   4*tan (x)*\1 + tan (x)/*cot(x)   6*\1 + cot (x)/*\1 + tan (x)/*cot(x)|
(1 + tan(x))      *|- |\1 + cot (x)/*log(1 + tan(x)) - --------------------|  - 3*|\1 + cot (x)/*log(1 + tan(x)) - --------------------|*|- --------------------- - ----------------------------- + 2*\1 + cot (x)/*cot(x)*log(1 + tan(x)) + -----------------------------| - 2*\1 + cot (x)/ *log(1 + tan(x)) - 4*cot (x)*\1 + cot (x)/*log(1 + tan(x)) + ----------------------- + ----------------------- + ------------------------------ - ------------------------------ - ------------------------------------ + ------------------------------ + ------------------------------------|
                   |  \                                     1 + tan(x)     /      \                                     1 + tan(x)     / |                  2                 1 + tan(x)                                                               1 + tan(x)         |                                                                                       1 + tan(x)                          3                            2                                2                         1 + tan(x)                          1 + tan(x)                          1 + tan(x)             |
                   \                                                                                                                     \      (1 + tan(x))                                                                                                              /                                                                                                               (1 + tan(x))                 (1 + tan(x))                     (1 + tan(x))                                                                                                                         /
$$\left(\tan{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} \left(- \left(\left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)} + 1}\right)^{3} - 3 \left(\left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)} + 1}\right) \left(2 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} \cot{\left(x \right)} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)} + 1} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)}}{\tan{\left(x \right)} + 1} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right)^{2}}\right) - 2 \left(\cot^{2}{\left(x \right)} + 1\right)^{2} \log{\left(\tan{\left(x \right)} + 1 \right)} - 4 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} + 1 \right)} \cot^{2}{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\tan{\left(x \right)} + 1} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\tan{\left(x \right)} + 1} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)} + 1} + \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \cot{\left(x \right)}}{\tan{\left(x \right)} + 1} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \left(\cot^{2}{\left(x \right)} + 1\right)}{\left(\tan{\left(x \right)} + 1\right)^{2}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan{\left(x \right)} \cot{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right)^{2}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{3} \cot{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right)^{3}}\right)$$