4 ______________ \/ 1 + sin(6*x)
d /4 ______________\ --\\/ 1 + sin(6*x) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
The answer is:
3*cos(6*x)
-------------------
3/4
2*(1 + sin(6*x))
/ 2 \
| 3*cos (6*x) |
-9*|---------------- + sin(6*x)|
\4*(1 + sin(6*x)) /
--------------------------------
3/4
(1 + sin(6*x))
/ 2 \
| 9*sin(6*x) 21*cos (6*x) |
27*|-2 + ---------------- + -----------------|*cos(6*x)
| 2*(1 + sin(6*x)) 2|
\ 8*(1 + sin(6*x)) /
-------------------------------------------------------
3/4
(1 + sin(6*x))