Mister Exam

Other calculators

Derivative of (1+sin(3x))/(1-cos(3x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + sin(3*x)
------------
1 - cos(3*x)
$$\frac{\sin{\left(3 x \right)} + 1}{1 - \cos{\left(3 x \right)}}$$
(1 + sin(3*x))/(1 - cos(3*x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of sine is cosine:

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 3*cos(3*x)    3*(1 + sin(3*x))*sin(3*x)
------------ - -------------------------
1 - cos(3*x)                      2     
                    (1 - cos(3*x))      
$$\frac{3 \cos{\left(3 x \right)}}{1 - \cos{\left(3 x \right)}} - \frac{3 \left(\sin{\left(3 x \right)} + 1\right) \sin{\left(3 x \right)}}{\left(1 - \cos{\left(3 x \right)}\right)^{2}}$$
The second derivative [src]
  /                 /      2                 \                                 \
  |                 | 2*sin (3*x)            |                                 |
  |  (1 + sin(3*x))*|------------- + cos(3*x)|                                 |
  |                 \-1 + cos(3*x)           /   2*cos(3*x)*sin(3*x)           |
9*|- ----------------------------------------- - ------------------- + sin(3*x)|
  \                -1 + cos(3*x)                    -1 + cos(3*x)              /
--------------------------------------------------------------------------------
                                 -1 + cos(3*x)                                  
$$\frac{9 \left(- \frac{\left(\sin{\left(3 x \right)} + 1\right) \left(\cos{\left(3 x \right)} + \frac{2 \sin^{2}{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1}\right)}{\cos{\left(3 x \right)} - 1} + \sin{\left(3 x \right)} - \frac{2 \sin{\left(3 x \right)} \cos{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1}\right)}{\cos{\left(3 x \right)} - 1}$$
The third derivative [src]
   /                                                                       /                            2        \                    \
   |                  /      2                 \                           |       6*cos(3*x)      6*sin (3*x)   |                    |
   |                  | 2*sin (3*x)            |            (1 + sin(3*x))*|-1 + ------------- + ----------------|*sin(3*x)           |
   |      2         3*|------------- + cos(3*x)|*cos(3*x)                  |     -1 + cos(3*x)                  2|                    |
   | 3*sin (3*x)      \-1 + cos(3*x)           /                           \                     (-1 + cos(3*x)) /                    |
27*|------------- - ------------------------------------- - --------------------------------------------------------------- + cos(3*x)|
   \-1 + cos(3*x)               -1 + cos(3*x)                                        -1 + cos(3*x)                                    /
---------------------------------------------------------------------------------------------------------------------------------------
                                                             -1 + cos(3*x)                                                             
$$\frac{27 \left(- \frac{\left(\sin{\left(3 x \right)} + 1\right) \left(-1 + \frac{6 \cos{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1} + \frac{6 \sin^{2}{\left(3 x \right)}}{\left(\cos{\left(3 x \right)} - 1\right)^{2}}\right) \sin{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1} + \cos{\left(3 x \right)} - \frac{3 \left(\cos{\left(3 x \right)} + \frac{2 \sin^{2}{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1}\right) \cos{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1} + \frac{3 \sin^{2}{\left(3 x \right)}}{\cos{\left(3 x \right)} - 1}\right)}{\cos{\left(3 x \right)} - 1}$$