1 + sin(3*x) ------------ 1 - cos(3*x)
(1 + sin(3*x))/(1 - cos(3*x))
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3*cos(3*x) 3*(1 + sin(3*x))*sin(3*x)
------------ - -------------------------
1 - cos(3*x) 2
(1 - cos(3*x))
/ / 2 \ \
| | 2*sin (3*x) | |
| (1 + sin(3*x))*|------------- + cos(3*x)| |
| \-1 + cos(3*x) / 2*cos(3*x)*sin(3*x) |
9*|- ----------------------------------------- - ------------------- + sin(3*x)|
\ -1 + cos(3*x) -1 + cos(3*x) /
--------------------------------------------------------------------------------
-1 + cos(3*x)
/ / 2 \ \
| / 2 \ | 6*cos(3*x) 6*sin (3*x) | |
| | 2*sin (3*x) | (1 + sin(3*x))*|-1 + ------------- + ----------------|*sin(3*x) |
| 2 3*|------------- + cos(3*x)|*cos(3*x) | -1 + cos(3*x) 2| |
| 3*sin (3*x) \-1 + cos(3*x) / \ (-1 + cos(3*x)) / |
27*|------------- - ------------------------------------- - --------------------------------------------------------------- + cos(3*x)|
\-1 + cos(3*x) -1 + cos(3*x) -1 + cos(3*x) /
---------------------------------------------------------------------------------------------------------------------------------------
-1 + cos(3*x)