Mister Exam

Other calculators

Derivative of (1+1/x)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       3
/    1\ 
|1 + -| 
\    x/ 
$$\left(1 + \frac{1}{x}\right)^{3}$$
(1 + 1/x)^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          2
   /    1\ 
-3*|1 + -| 
   \    x/ 
-----------
      2    
     x     
$$- \frac{3 \left(1 + \frac{1}{x}\right)^{2}}{x^{2}}$$
The second derivative [src]
  /    1\ /    2\
6*|1 + -|*|1 + -|
  \    x/ \    x/
-----------------
         3       
        x        
$$\frac{6 \left(1 + \frac{1}{x}\right) \left(1 + \frac{2}{x}\right)}{x^{3}}$$
The third derivative [src]
   /                    /    1\\
   |              2   6*|1 + -||
   |1      /    1\      \    x/|
-6*|-- + 3*|1 + -|  + ---------|
   | 2     \    x/        x    |
   \x                          /
--------------------------------
                4               
               x                
$$- \frac{6 \left(3 \left(1 + \frac{1}{x}\right)^{2} + \frac{6 \left(1 + \frac{1}{x}\right)}{x} + \frac{1}{x^{2}}\right)}{x^{4}}$$