1 + log(x) ---------- 2/7 x + 1
(1 + log(x))/(x^(2/7) + 1)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is .
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*(1 + log(x))
------------ - ------------------
/ 2/7 \ 2
x*\x + 1/ 5/7 / 2/7 \
7*x *\x + 1/
/ 4 5 \
2*(1 + log(x))*|-------- + ----|
| 2/7 2/7|
1 4 \1 + x x /
- -- - ------------------ + --------------------------------
2 12/7 / 2/7\ 10/7 / 2/7\
x 7*x *\1 + x / 49*x *\1 + x /
------------------------------------------------------------
2/7
1 + x
/ / 2 5 5 \\
| / 4 5 \ 12*(1 + log(x))*|----------- + ---- + ---------------||
| 3*|-------- + ----| | 2 4/7 2/7 / 2/7\||
| | 2/7 2/7| |/ 2/7\ x x *\1 + x /||
|1 3 \1 + x x / \\1 + x / /|
2*|-- + ------------------ + ------------------- - ------------------------------------------------------|
| 3 19/7 / 2/7\ 17/7 / 2/7\ 15/7 / 2/7\ |
\x 7*x *\1 + x / 49*x *\1 + x / 343*x *\1 + x / /
----------------------------------------------------------------------------------------------------------
2/7
1 + x