Mister Exam

Other calculators

Derivative of (1+lnx)/(x^(4/14)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + log(x)
----------
  2/7     
 x    + 1 
$$\frac{\log{\left(x \right)} + 1}{x^{\frac{2}{7}} + 1}$$
(1 + log(x))/(x^(2/7) + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of is .

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     1           2*(1 + log(x))  
------------ - ------------------
  / 2/7    \                    2
x*\x    + 1/      5/7 / 2/7    \ 
               7*x   *\x    + 1/ 
$$\frac{1}{x \left(x^{\frac{2}{7}} + 1\right)} - \frac{2 \left(\log{\left(x \right)} + 1\right)}{7 x^{\frac{5}{7}} \left(x^{\frac{2}{7}} + 1\right)^{2}}$$
The second derivative [src]
                                           /   4        5  \
                            2*(1 + log(x))*|-------- + ----|
                                           |     2/7    2/7|
  1            4                           \1 + x      x   /
- -- - ------------------ + --------------------------------
   2      12/7 /     2/7\             10/7 /     2/7\       
  x    7*x    *\1 + x   /         49*x    *\1 + x   /       
------------------------------------------------------------
                               2/7                          
                          1 + x                             
$$\frac{- \frac{1}{x^{2}} + \frac{2 \left(\frac{4}{x^{\frac{2}{7}} + 1} + \frac{5}{x^{\frac{2}{7}}}\right) \left(\log{\left(x \right)} + 1\right)}{49 x^{\frac{10}{7}} \left(x^{\frac{2}{7}} + 1\right)} - \frac{4}{7 x^{\frac{12}{7}} \left(x^{\frac{2}{7}} + 1\right)}}{x^{\frac{2}{7}} + 1}$$
The third derivative [src]
  /                                                                /     2         5            5       \\
  |                            /   4        5  \   12*(1 + log(x))*|----------- + ---- + ---------------||
  |                          3*|-------- + ----|                   |          2    4/7    2/7 /     2/7\||
  |                            |     2/7    2/7|                   |/     2/7\    x      x   *\1 + x   /||
  |1            3              \1 + x      x   /                   \\1 + x   /                          /|
2*|-- + ------------------ + ------------------- - ------------------------------------------------------|
  | 3      19/7 /     2/7\       17/7 /     2/7\                         15/7 /     2/7\                 |
  \x    7*x    *\1 + x   /   49*x    *\1 + x   /                    343*x    *\1 + x   /                 /
----------------------------------------------------------------------------------------------------------
                                                      2/7                                                 
                                                 1 + x                                                    
$$\frac{2 \left(\frac{1}{x^{3}} - \frac{12 \left(\log{\left(x \right)} + 1\right) \left(\frac{2}{\left(x^{\frac{2}{7}} + 1\right)^{2}} + \frac{5}{x^{\frac{2}{7}} \left(x^{\frac{2}{7}} + 1\right)} + \frac{5}{x^{\frac{4}{7}}}\right)}{343 x^{\frac{15}{7}} \left(x^{\frac{2}{7}} + 1\right)} + \frac{3 \left(\frac{4}{x^{\frac{2}{7}} + 1} + \frac{5}{x^{\frac{2}{7}}}\right)}{49 x^{\frac{17}{7}} \left(x^{\frac{2}{7}} + 1\right)} + \frac{3}{7 x^{\frac{19}{7}} \left(x^{\frac{2}{7}} + 1\right)}\right)}{x^{\frac{2}{7}} + 1}$$