Mister Exam

Derivative of (1+lnx)/(1+x)²

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + log(x)
----------
        2 
 (1 + x)  
$$\frac{\log{\left(x \right)} + 1}{\left(x + 1\right)^{2}}$$
(1 + log(x))/(1 + x)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of is .

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1        (1 + log(x))*(-2 - 2*x)
---------- + -----------------------
         2                  4       
x*(1 + x)            (1 + x)        
$$\frac{\left(- 2 x - 2\right) \left(\log{\left(x \right)} + 1\right)}{\left(x + 1\right)^{4}} + \frac{1}{x \left(x + 1\right)^{2}}$$
The second derivative [src]
  1        4       6*(1 + log(x))
- -- - --------- + --------------
   2   x*(1 + x)             2   
  x                   (1 + x)    
---------------------------------
                    2            
             (1 + x)             
$$\frac{\frac{6 \left(\log{\left(x \right)} + 1\right)}{\left(x + 1\right)^{2}} - \frac{4}{x \left(x + 1\right)} - \frac{1}{x^{2}}}{\left(x + 1\right)^{2}}$$
The third derivative [src]
  /1    12*(1 + log(x))       3            9     \
2*|-- - --------------- + ---------- + ----------|
  | 3              3       2                    2|
  \x        (1 + x)       x *(1 + x)   x*(1 + x) /
--------------------------------------------------
                            2                     
                     (1 + x)                      
$$\frac{2 \left(- \frac{12 \left(\log{\left(x \right)} + 1\right)}{\left(x + 1\right)^{3}} + \frac{9}{x \left(x + 1\right)^{2}} + \frac{3}{x^{2} \left(x + 1\right)} + \frac{1}{x^{3}}\right)}{\left(x + 1\right)^{2}}$$